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ABSTRACT

Radio frequency (RF) techniques have shown promise for

continuous contactless healthcare applications. However,

real-world indoor environments pose challenges for exist-

ing systems, which may struggle to detect subtle physio-

logical signals. This paper proposesMedusa, a novel wire-

less vital-sign sensing system designed for multi-view se-

tups. It enables users to deploy distributed Multiple Input

Multiple Output (MIMO) arrays into their daily living en-

vironments, facilitating vital-sign sensing in real-world set-

tings. Unlike most existing single Commercial Off-The-Shelf

(COTS) radar-based systems that operate under controlled

settings Medusa’s primary novelty lies in the design of a

first-of-its-kind flexible multi-view vital sign sensing system

that is view-agnostic, pose-agnostic, and contactless and can

sense basic human vitals with good accuracy. Through our

well-engineered hardware and software co-design, Medusa

enables real-time processing of large distributed MIMO ar-

rays, while balancing the tradeoff between Signal-to-Noise

Ratio (SNR) and spatial diversity gain across each of its four

distributed 4 × 4 sub-arrays for increased robustness. This is

achieved using our novel unsupervised learning model which

effectively recovers vital sign waveforms by decomposing

the received signals. Extensive evaluations with 21 partici-

pants demonstrate Medusa ’s spatial diversity gain for real-

world vital-sign monitoring, enabling free movement and

orientation of subjects in both familiar and unfamiliar indoor

environments.

1 INTRODUCTION

Over the last ten years, digital wellness has become increas-

ingly popular, especially in the field of passive health mon-

itoring (PHM) without the need for on-body devices. This

trend supports a range of applications, such as remote phys-

ical rehabilitation, vital sign monitoring, and fall detection

in indoor settings [6, 11, 13, 41, 44]. These systems offer

numerous advantages to both users and physicians. Users

are unburdened from the correct usage and maintenance of

sensor devices, allowing them to participate freely in daily

activities. On the other hand, physicians can implement con-

tinuous patient-monitoring protocols and facilitate proactive

management of their health.

There have been a lot of recent advancements in wireless-

driven passive health monitoring (PHM) , ranging from sim-

ple respiration rate monitoring (e.g., [6]) to more advanced

biometric sensing solutions using various technologies (e.g.,

UWB [11, 13, 41, 44], mmWave [13, 15], FMCW Radar [7],

Wi-Fi [20, 24, 39]). While prevalent contact sensing technolo-

gies, including wristbands and chest vests, allow vital sign

monitoring, such devices present limitations in prolonged

use due to discomfort arising from contact with the skin and

lack of robustness in detecting moving human subjects.

Despite their potential, existing radar-based vital-sign

monitoring systems face challenges and decreased perfor-

mance in real-world environments. (i) Lack of Robustness

to Blockage and Motion: furniture and other environmen-

tal obstacles can block radar signals in real-world settings.

Also, body parts may obstruct the radar path during sub-

ject movement. Commercial off-the-shelf (COTS) mmWave

1

ar
X

iv
:2

31
0.

05
50

7v
3 

 [
cs

.A
R

] 
 2

2 
O

ct
 2

02
4



ACM MobiCom’25, Hong Kong, ChinaYilong Li
1
, Ramanujan K Sheshadri

2
, Karthik Sundaresan

3
, Eugene Chai

2
, Yijing Zeng

1
, Jayaram Raghuram

1
, and Suman Banerjee

1
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Figure 1: Vital-sign monitoring of human subjects in

their daily habitats enables free movement and multi-

ple subjects.

radar devices face limitations in penetration, which hinders

their ability to reliably distinguish the desired signals in the

real world. (ii) Limited Applicability: Existing radar-based

vital-sign sensing systems operate under controlled condi-

tions due to limited antenna arrays, requiring subjects to face

the radar directly. They allow only limited motion, either

stationary or small movements, within a narrow field-of-

view (FoV). (iii) Limited Coverage from Single-View Sens-

ing: single-view vital-sign sensing systems, whether using

a single Tx-Rx COTS radar or a single-perspective MIMO

configuration, can only capture partial information from a

human subject, especially in NLoS. Single-view systems are

particularly vulnerable to occlusions caused by the subject’s

body parts when the subject is not directly facing the radar.

These occlusions can obstruct the radar signals, resulting in

inaccurate detection.

The primary question posed in this research is: Is it feasible
to transition radar sensing of biometric signals from restric-
tive deployments to practical in-the-wild operation, allowing
for the monitoring of subjects in their daily life environment
without sacrificing the sensing performance?
We propose a novel RF-based vital-sign monitoring sys-

tem with distributed MIMO arrays, enabling the detection

of human subjects in ambulatory settings with unconstrained

movement and orientation. The core intuition behindMedusa

is to leverage the diverse signal paths and perspectives en-

abled by spatially distributed MIMO radar arrays for “multi-

view sensing”, as shown in Fig. 1. Unlike existing “single-

view” systems that can only capture partial vital-sign infor-

mation as people change orientations, our distributed MIMO

approach allows the gathering of multi-aspect data.

While distributedMIMO arrays contribute to a throughput

improvement in communication systems, it can potentially

deliver a more profound impact for wireless sensing – go-

ing from constrained operation to enabling practical “in-the-

wild” sensing operation that is robust and immune to varying

target locations, orientations, blockages, and mobility. To-

wards realizing this objective, we presentMedusa– a large

systems effort that addresses the following key challenges,

leading to its contributions:

1. Distributed Radar System: How do we create a practi-

cal, distributed MIMO radar system that has sufficient gain

to operate in real-time and reliably for practical room-scale

deployments? While UWB and mmWave radar systems offer

high resolution (1-4 GHz bandwidth), radar sensing offers a

very limited operational range (less than 3m) with today’s

systems that have limited arrays (e.g., 4 × 3 elements vir-

tual mmWave array [1]). This is further compounded by the

potential interference that arises when distributed radars

transmit simultaneously without tight synchronization – a

feature that is hard to accomplish yet important for a coher-

ent MIMO system, the lack of which leads to confounding

and corruption of the received target signals with other re-

flections.

Contribution 1. Medusa builds a first-of-its-kind 16

UWB radar elements MIMO system that enables flexible,

coherent, distributed vital sign sensing in a multi-view way

(shown in Fig. 2). The wireless synchronization facilitates

easy deployment and ensures robustness across diverse tar-

get and environment configurations. mmWave radar suf-

fers from signal blockage in NLoS scenarios. In contrast,

UWB’s better penetration capability (3-10 GHz) compared to

mmWave, coupled with the large antenna gain inMedusa,

allows us to detect targets as far as 6m, even in NLoS reliably.

2. BalancingMIMO SNRGain vs. Spatial Diversity Gain:

The theory of distributed MIMO radar well understood [8].

However, dispersing the MIMO array into various sub-arrays

can amplify spatial diversity gain, even if the SNR of in-

dividual sub-arrays is reduced. We revisit the tradeoff be-

tween antenna gain (SNR) and diversity gain (outage proba-

bility) in the context of sensing: A single 256 virtual MIMO

(16𝑇𝑥 × 16𝑅𝑥 ) array maximizes gain/coverage from one per-

spective but lacks robustness to diverse target orientations,

locations, NLoS conditions, blockages, and motion. Con-

versely, distributing sub-arrays across multiple locations

enhances robustness to “in-the-wild” configurations at the

cost of reduced antenna gain and coverage per sub-array.

The challenge is efficiently managing this tradeoff to en-

sure accurate and robust sensing across varied target and

environmental conditions.

Contribution 2. Through extensive experimental and

motivational characterization, Medusa identifies an ideal

operating point, wherein one sub-array per quadrant around

the target area strikes the most effective balance – any fur-

ther distribution only reduces the gain per sub-array without
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Figure 2: System architecture diagram of Medusa.

adding appreciably to the diversity gain. In contrast, less di-

versity diminishes the robustness in sensing performance. In

particular,Medusa employs four 4× 4 sub-arrays, each with

16 virtual MIMO elements, to establish its distributed radar

system for rooms. This configuration also offers flexibility

to adapt to other room shapes as needed.

3. Multi-view Information Fusion and Signal Extrac-

tion: While Medusa enables optimal balanced SNR sens-

ing signals and multi-view information in dynamic environ-

ments, it is still a hard challenge to isolate the vital sign

signals mixed with numerous other reflections (distortions

from human motion, multipath, etc.) in a non-linear man-

ner. Additionally, extracting desired signals from different

angles of the subject requires synchronizing and fusing the

collected vital sign signals. Machine learning offers a scalable

approach to extract our desired signal, given its recent suc-

cess in several wireless sensing problems [11, 13, 15, 37, 44].

However, these learning models are limited to controlled

settings and single-view COTS radar data, lacking the abil-

ity to process multi-view information. Respiration belts and

other professional contact vital sign sensors [2, 4]) suffer

from signal distortion caused by human movement, which

leads to a lack of reliable ground truth data for supervised

learning. Furthermore, every environment leaves its artifacts

in a dataset, significantly affecting the model’s generality

when tested on unseen environments with different configu-

rations.

Contribution 3.Medusa leverages an unsupervised ap-

proach to extract the desired target breathing signals in vari-

ous environment configurations while allowing for free mo-

tion and movement inherent to everyday tasks. To leverage

the diversity offered by the distributed sub-arrays, Medusa

employs a multi-head attention mechanism that allows the

model to appropriately and implicitly attend to the different

sub-arrays based on the estimated location and orientation

of the target as well as the configuration of the environment

(blockages).

Our comprehensive evaluation with 21 participant sub-

jects reveals thatMedusa improves median respiration mea-

surement by over 20% accuracy compared to prior art and

baselines in practical indoor environments, characterized

by varying subject locations and orientations, and sustains

errors under 5% even in NLoS (obstacles) conditions, where

other approaches falter. Further, leveraging the diversity

benefits of its distributed platform allows its model to (gen-

eralize) sustain performance accuracy even in unseen envi-

ronments, subject mobility, and multiple subjects.

To the best of our knowledge,Medusa is the first-its-kind

real-time vital sign monitoring system designed to function

effectively in dynamic real-world environments, which is

pioneering in incorporating multi-view information fusion

into wireless vital sign sensing.

2 MOTIVATION

Figure 3: Respiration signals by vibration of COTS

radar: Static subject vs. Moving subject.

In this section, we empirically study the impact of human

movement and orientation on wireless vital sign monitoring

and motivate the advantages of distributed MIMO array-

based sensing (multi-view) over traditional co-located MIMO

antenna systems (single-view).

2.1 Case for Distributed MIMO Sensing

The high-level idea of Medusa is to strike a tradeoff be-

tween MIMO antenna gain for SNR vs. the spatial diversity

gain (multi-view) for a dynamic environment. As depicted in

Fig. 4, the radar data from multiple angles provides diverse

“viewpoints” of the target. In real environments, furniture

and obstacles may obstruct some signal paths. However, as

3
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subjects move, it’s improbable that all directions are simulta-

neously blocked. Multi-view information from distributed

MIMO radar arrays can prevent performance drops in tra-

ditional single-view sensing systems. Sensing information

from angles beyond the front view of the human subject pro-

vides complementary data, thereby achieving diversity gain

through these different "viewpoints." Our motivational exper-

iments illustrate how spatial diversity solves the challenges

discussed before.

Figure 4: Spatial diversity from distributed MIMO ar-

rays (1, 2, 3, 4) in multi-view.

Lack of Robustness to Blockage and Movement: Envi-

ronmental structures can block radar signals in real-world

settings, and as people move, their own body parts may also

obstruct the signal paths. The respiration signals for static

and moving subjects, shown in Fig. 3, demonstrate the dis-

tortion caused by movement, making it difficult to extract

accurate breathing patterns.

The result in Fig 5 highlights that distributing our 16 × 16

modular array into two 8 × 8 arrays (placed at 90 degrees to

each other) into multi-view setup and illustrates a real-world

deployment scenario for a static subject with furniture and

obstructions (e.g., wooden ormetal barrier) in the room space.

For a fair comparison, we employ one 16 × 16 MIMO array

and two 8 × 8 MIMO arrays, ensuring an equal number of

antennas. The 16×16 MIMO array is subjected to blockage by

an obstacle barrier placed directly in front of it. It highlights

the substantial performance degradation of co-located radar

systems (Single-View) in such situations, with a notable error

percentage of over 25%.

Limited Applicability: COTS UWB radar sensors used

in previous studies [11, 41, 44] have a SISO configuration,

limiting the operating range. MIMO radars offer superior

spatial resolution and higher SNR gain compared to SISO

systems, offering increased operating range across both dis-

tance and angular dimensions. This is evident in the 16 × 16

(256-element virtual) radar, as shown in Fig. 6. It achieves a

substantial 10-30 dB SNR gain, particularly when the target is

directly facing the antennas (Azimuth 0
◦
), enabling practical

operational ranges exceeding 6m. However, the performance

of co-located MIMO systems deteriorates when the target

is outside the field-of-view (FoV) in Fig 6(b), resulting in a

degraded SNR. While the mmWave MIMO radar delivers a

good SNR when the target directly faces it (Azimuth 0
◦
), its

performance degrades significantly out of FoV.
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Figure 5: Single-view 16 × 16 MIMO vs. two 8 × 8 MIMO

radars in LOS and NLOS scenarios with subjects facing

the radar.
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Figure 7: Single-view (one 16 × 16 radar) vs. multiple-

view radar (two 8 × 8).

Limited Coverage of Single-View Radars: While conven-

tional single-view (co-located) MIMO antennas improve SNR

and coverage of a radar’s aperture, their ability to illuminate

the target and obtain sufficient reflections diminishes signifi-

cantly when the target is not oriented front-facing the radar.

On the other hand, a spatially distributed MIMO system will

4
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provide the necessary spatial diversity for vital monitoring

irrespective of the target’s distance and orientation. The re-

sult in Fig 7 illustrates that two 8 × 8 arrays (placed at 90

degrees to each other) of multi-view setup sacrifice some

accuracy (median error still under 5%) compared to a single

16 × 16 array when the static target is facing front. While

it is impossible to eliminate the blockage of a co-located

MIMO array (for instance, when an object in the living room,

such as a refrigerator, obstructs the signal path, causing 6-

7 dB attenuation), distributed MIMO arrays with multiple

viewpoints can still operate effectively, by increasing the

probability of an unobstructed path.

2.2 Medusa Design Challenges

While our experimental study motivates the need for a dis-

tributed MIMO radar for robust HVM across target and en-

vironment dynamics, realizing such a system is challenging.

Synchronization and phase coherency: In developing

an active MIMO radar system, it is imperative to guarantee

synchronization of each radar element that operates with its

own transmit/receive (TX/RX) chain. This poses a challenge

in hardware design, where the systemmust provide adequate

gain across all the distributed subarrays, while concurrently

synchronizing them, lest leading to interference and degrada-

tion of target SNR and consequently obscured by additional

reflections. Although challenging, high-precision, over-the-

air clock synchronization is crucial for scalable deployment

and operation of distributed MIMO arrays.

Balancing SNR vs. Diversity:As seen in the study, while
large MIMO arrays (e.g., 16× 16) increase the SNR and hence

the coverage of the radar, they fail to bring robustness to

sensing in practical scenarios. In contrast, while spatially

distributing a large MIMO array into several smaller sub-

arrays brings much-needed diversity, over-distribution can

significantly reduce the gain and coverage per aperture with-

out adding diversity appreciably. A careful balance of the

tradeoff between coverage and sensing robustness need to be

addressed in determining an efficient distribution of MIMO

sub-arrays for sensing.

Vital Sign Signal Extraction: To realize the true poten-

tial of distributed MIMO sensing for robustness towards

target and environment dynamics, we need a scalable ap-

proach that can leverage and effectively fuse signals from

the distributed sub-arrays to accurately extract the human

vital signal from a complex non-linear mixture with other

undesired signals (e.g., human motion, multipath reflections)

in real-time.

Medusa addresses these challenges by building a MIMO

UWB radar sensing with accurate time synchronization for

distributed radar elements in real-world situations and an

unsupervised learning model.

3 SYSTEM DESIGN

Medusa employs a modular design that enables flexible de-

ployment for optimal performance in a wide range of en-

vironments. Multiple radar sensors, each of up to 16 × 16

array size, can be distributed to cover an area in its entirety

while guaranteeing fully coherent distributed MIMO sens-

ing across all radar sensors. Motivated by the observations

made in Sec. 2, we now describeMedusa’s original hardware

design, its efficient deployment and operation, and tightly

integrated software models that leverage its distributed de-

ployment.

3.1 Medusa Hardware Design

Medusa consists of a baseboard onto which multiple RF

daughterboards (up to 16). Each daughterboard is built around
a Novelda X4 UWB radar chip [3] which drives one Tx and

one Rx antenna. These antennas are mounted on a separate

antenna board that is connected to the daughterboard via RF

cables. These different components of Medusa are shown

in Fig. 8.

3.1.1 Medusa Radar Baseboard. The radar baseboard com-

prises a Xilinx Zynq UltraScale+MPSoC FPGA [5] and socket

interfaces for 16 radar daughterboards. Each socket is con-

nected to the Zynq FPGA via 16 SPI buses and a pair of

differential RF clock lines. This fan design enables signifi-

cant operating flexibility across the daughterboards: all 16

daughterboards to be operated as a single coherent MIMO

radar; alternatively, the daughterboards can be divided into

subgroups of smaller MIMO radars, with each subgroup op-

erating independently of the others. Timing skews within

the clock signals and SPI to the daughterboards must be elim-

inated to ensure coherent MIMO radar operation.Medusa

distributes a phase-coherent 243MHz Low-Voltage Differ-

ential Signal (LVDS) clock signal from the Zync FPGA to

all attached daughterboards over the differential RF lines to

eliminate clock noise and interference. Impedance match-

ing is also carefully calibrated to ensure equal clock and

SPI line lengths, further reducing any timing skews in the

hardware. For coherent MIMO operation,Medusa must also

ensure coherence across the internal state of all X4 UWB

radar chips. Finally, the baseboard streams I/Q data from

all daughterboards, in real-time, to a host PC via a 10GbE

Ethernet connection.

3.1.2 Medusa Daughterboard. Each daughterboard is built

around a Novelda X4 chip [3]. The daughterboard routes dif-

ferential clock signals and SPI commands from the baseboard

to the X4 chip and forwards I/Q data from the X4 radar back

to the baseboard, all with minimal time delay. Each daugh-

terboard is physically pluggable into the baseboard via an

18-socket interface.

3.1.3 Medusa Antenna Design. Each daughterboard drives

one Tx and one Rx antenna. To minimize errors in vital

5
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Figure 8: Medusa hardware platform.

Daughterboard

SPI Data 

Clock Signal

Baseboard 1

...

Wireless Sync ChannelFPGA Clock Sync
Controller

Daughterboard Daughterboard Daughterboard Daughterboard

SPI Data 

Clock Signal

Baseboard 2

...

FPGAClock Sync
Controller

Daughterboard Daughterboard Daughterboard

Figure 9: Medusa’s scalable design with all elements clock synchronization.

sign monitoring,Medusa employs custom high-gain direc-

tional Vivaldi antenna elements that provide optimal SNR

for radar returns, as shown in Fig. 8(e). The Novelda X4 chip

employs differential RF lines for TX and RX, requiring 100Ω

differential antennas. These antennas are connected to the

daughterboard using SMA connectors.

3.2 Wireless Clock Synchronization

Efforts have been made to synchronize multiple radar sys-

tems over the years [9, 27]. However, these approaches are

unsuited for wireless synchronization in indoor distributed

MIMO array systems. The higher frequency of clock signals

required for phase coherency makes conventional multiple

radar synchronization systems ineffective in UWB radar

systems. Medusa employs multiple baseboards with daugh-

terboards and antennas for distributed MIMO sensing. To

maintain coherence between physically separated daugh-

terboards,Medusa uses wireless clock synchronization via

COTS Software-Defined Radio (SDR) on each baseboard. One

of the baseboards is designated as the clock server, while all
others are the clock clients. Clock signals are transmitted

from the server baseboard to all the client baseboards. Fig. 9

shows the clock generation design for each client. The wire-

less clock signals received by the client are sent into a phase-

locked loop (PLL) which “cleans-up” the noisy wireless clock

signal. Coherent MIMO requires that the phase of this sig-

nal be aligned at all the client baseboards. Nonetheless, the

RF propagation distance between the server and the client

influences the clock signal phase. A phase-offset correction

is applied to obtain a clean reference clock signal, which

is subsequently used to clock the X4 chip during standard

operation.

3.2.1 Clock Distribution. The wireless clocks signals suffer

from carrier frequency offset (CFO) due to the minute clock

differences between the server and client baseboards. To

correct this, the clock signals are transmitted as differential
two tones of frequencies signals. Instead of transmitting a

single clock signal, two different clock signals at frequencies

𝑓1 and 𝑓2 are sent. These are received at the client as
ˆ𝑓1 =

𝑓1 + 𝛿 𝑓 and
ˆ𝑓2 = 𝑓2 + 𝛿 𝑓 where 𝛿 𝑓 is the CFO between the

server and client transceivers. The client baseboard then

derives the final reference clock from the difference of these

two received signals,
ˆ𝑓1 − ˆ𝑓2 = 𝑓1 − 𝑓2, that are no longer

affected by the CFO.

3.3 Medusa Deployment - Diversity vs. SNR

To achieve optimal performance, it is crucial to find a balance

of two key factors: diversity gains from spatially distributed

MIMO arrays and SNR gains from each co-located MIMO

antenna array. We provide analytical discussion for deploy-

ment, supported by empirical experiments.

Discussion: Medusa’s insight is that each single-view

radar captures only partial vital sign information, affected by

signal blockages and subject movement, especially in NLoS.

The captured vital signs varies significantly with the sub-

ject’s orientation. As Fig. 4 illustrates, radar data from four

orthogonal directions (front, back, left, and right) demon-

strates substantial diversity. Each MIMO radar potentially

captures information from one or two orthogonal directions.

SNR, proportional to antenna count, determines signal qual-

ity. While a 16×16 array offers higher SNR than a 4×4 array,

it provides limited spatial diversity. Conversely, sixteen 1× 1

arrays maximize spatial diversity but sacrifice SNR. To bal-

ance deployment convenience, complete spatial diversity,

and adequate SNR, we propose an optimal configuration of

6
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four 4 × 4 MIMO arrays in orthogonal directions. This setup

ensures comprehensive vital sign information from moving

subjects in NLoS conditions while maintaining signal quality

in a low deployment workload.

Experiments: Then we empirically conduct thorough ex-

periments leveraging the Medusa’s modular design to vali-

date various configurations (e.g., one 16 × 16, two 8 × 8, four

4 × 4 and sixteen 1 × 1 radars) and evaluating the measured

breaths per minute (bpm) accuracy with a static target po-

sitioned at different indoor locations (see Fig 18) for both

LoS and NLoS scenarios. (Details on ground truth and data

collection can be found in Sec 4). Fig 10 shows a subset of our

experimental results. In LOS conditions, when the target is

close to a radar (e.g., 1m), the 16 × 16 configuration delivers

the best performance due to its high SNR gains with an aver-

age respiratory error of 2.01 bpm. However, when the target

moves away to 5m, the 16 × 16 configuration experiences a

decline in accuracy as the SNR decreases, resulting in mean

respiratory error of 2.98 bpm. Meanwhile, the spatially dis-

tributed four 4×4 and two 8×8 configurations together help

compensate for the SNR loss at individual radars. In NLOS

scenarios, the 16 1×1 distributed single antenna arrays, while

benefiting from spatial distribution and achieving more sta-

ble performance than single-view 16 × 16 MIMO arrays, do

not gain any SNR advantages, resulting in a median BPM

error of 3.41 bpm at 1m and 4.12 bpm at 5m. The four 4 × 4

configuration, on the other hand, offers the best trade-off

(median BPM error 2.11 bpm) between SNR and diversity

gains and perform the best. Consequently,Medusa adopts

the four 4 × 4 configuration.
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Figure 10: Respiration rate errors for various MIMO

array configurations at 1m and 5m distances in both

LoS and NLoS scenarios.

Figure 11: Radar frame. The radar data structure of

Medusa comprises CIR matrices associated with each

radar element corresponding to each antenna.

3.4 Human Vitals Sensing withMedusa

The X4 chip uses UWB time-of-flight pulses to measure

ranges. With each UWB pulse, the X4 chip returns an 186-

bin range measurement, with each bin containing the ampli-

tude and phase of a reflected signal from the indicated dis-

tance. Fig 11 illustrates the returned range data frommultiple

daughterboard antennas over time. Changes in human ac-

tivities and vitals (e.g. breathing, heartbeats, etc) will induce

changes in the reflected signals captured in each radar frame.

This is inter-mingled with signal reflections due to other

movement in the environment, along with multipath distor-

tions. These radar frames are encoded as I/Q data streams

and transmitted over the 10GbE link, where Medusa em-

ploys an unsupervised ML model to separate RF changes due

to human vitals from those due to other unrelated activities.

3.4.1 Extracting Human Vitals. Medusa recovers the human

vital signals mixed with other interfering signals using in-

dependent component analysis (ICA) [16]. Consider a single
radar receiver, 𝑘 ∈ {1, . . . , 𝑀}, where𝑀 is the total number

of radar receivers. Let 𝑋𝑘 (𝑡 ) = [𝑥1(𝑡 ), . . . , 𝑥𝑁 (𝑡 )]𝑇 be a vector

of the 𝑁 source signals induced by human respiration, heart-

beats, and motion for one or more monitored individuals.

These signals are combined in a non-linear fashion at the

radar sensors as

𝑆𝑘 (𝑡 ) = 𝑓 ([𝑥1(𝑡 ), . . . , 𝑥𝑁 (𝑡 )]𝑇 ) = [𝑠1(𝑡 ), . . . , 𝑠𝑁 (𝑡 )]𝑇 (1)

.

.

. Encoder

Input Mixed RF data

Binary Cross-Entropy Loss

Decomposed Signals
Human motion

Breathing Pattern

Noise

Heart beatClassifier

Figure 12: Arhitecture of our unsupervised learning

model to decompose and recover the waveforms.

where 𝑆𝑘 (𝑡 ) is the vector of 𝑁 received signals at the 𝑘𝑡ℎ

radar receiver. In Medusa, these 𝑁 signals 𝑠𝑛(𝑡 ) arrive in
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Medusa Platform IWR1443BOOST AWR2243 Cascade

Frequency Band 6.5-9.5GHz 76-81 GHz 76-81 GHz

TX/RX 16TX/16RX 3TX/4RX 12TX/16RX

Azimuth Array 256 element virtual array 12 element virtual array 86 element virtual array

Max Angular Resolution 0.448 degree 9.53 degree 1.4 degree

Min Spacing Separation 0.039m at 5m 0.841m at 5m 0.122m at 5m

Frame Rate (FPS) 50 – 200 10 5

Table 1: Comparison of Medusa platform, TI IWR1443BOOST, and TI AWR2243 Cascade.

𝑁 different range bins. The objective of non-linear ICA is

to find the approximate inverse 𝑓 −1
to recover the source

signals 𝑋𝑘 (𝑡 ) from 𝑆𝑘 (𝑡 ). To do this, we employ a contrastive

learning model, as shown in Fig. 12.

In Medusa, 𝑆𝑘 (𝑡 ) represents a window of 𝑁 range bins

from receiver 𝑘 at some time 𝑡 , where 1 ≤ 𝑁 ≤ 186. We gen-

erate positive 𝑌𝑘 (𝑡 ) and negative 𝑌 ∗
𝑘

(𝑡 ) augmented samples

from 𝑆𝑘 (𝑡 ) for contrastive training, defined as

𝑌𝑘 (𝑡 ) =

(
𝑆𝑘 (𝑡 )

𝑆𝑘 (𝑡 −𝑇 )

)
, 𝑌 ∗

𝑘
(𝑡 ) =

(
𝑆𝑘 (𝑡 )

𝑆𝑘 (𝑡 − 𝛿)

)
(2)

where𝑇 is a constant and 𝛿 is a randomly selected time offset.

Let E(·) define the encoder network used in the contrastive
model. If we train the model to discriminate between E(𝑌𝑘 (𝑡 ))

and E(𝑌 ∗
𝑘

(𝑡 )), we obtain the representation of ℎ(𝑆𝑘 (𝑡 )) ≈
𝑓 −1

(𝑆𝑘 (𝑡 )) [17]. Note however, that this model does not yet

account for coherent radar signals from multiple receivers.

To this end,Medusa uses a multi-head attention step [30] in

its unsupervised model as described next.

3.4.2 Multi-Receiver Fusion. Instead of utilizing the received

signals from each antenna 𝑆𝑘 (𝑡 ) directly, Medusa uses a

multi-head attention layer to fuse signal information from all

the radar receivers, separately for the positive and negative

augmented signals, prior to the contrastive training:

[𝑍1(𝑡 ), . . . , 𝑍𝑊 (𝑡 )] = A([𝑌1(𝑡 ), . . . , 𝑌𝑀 (𝑡 )]),

[𝑍 ∗
1
(𝑡 ), . . . , 𝑍 ∗

𝑊 (𝑡 )] = A([𝑌 ∗
1

(𝑡 ), . . . , 𝑌 ∗
𝑀 (𝑡 )]). (3)

Here𝑊 is the number of heads in the attention layer [30],

and A(·) is the attention layer function that maps the 𝑀

radar receiver signals into𝑊 head outputs. We then train the

contrastive model to discriminate between the encoded pair

E(𝑍𝑤(𝑡 )) and E(𝑍 ∗
𝑤(𝑡 )) of each head output 𝑤 ∈ {1, . . . ,𝑊 }.

3.4.3 Features and Vital Signs Identification. Medusa iden-

tifies the breathing and heartbeat signals by analyzing the

Respiratory Rate Variability (RRV) [21] and Heart Rate Vari-

ability (HRV) [26] of each of the𝑊 signals, as illustrated in

Fig. 13. RRV and HRV are key indicators of general health

and respiratory or cardiac complications. Normal breathing

and heart-rate exhibit relatively constant rates and volumes,

but variations within these rhythms are labeled as RRV and

HRV, respectively. We use RRV and HRV analysis to identify

the correct breathing or heart-beat signals from the output

features of the trained model. We use the extracted wave-

forms to identify if they are in respiratory rhythm or show

normal variations in heart rate, and distinguish them into res-

piratory waveforms, heart-rate signals, or noise. This allows

us to detect and track vital signs in the radar data accurately.

Decomposed Vector

Heart Rate
Varability

(HRV) Analysis

Respiration Rate
Varability

(RRV)
Analysis

Respiratory Signal

Heartbeat Signal

Respiration Rate

Heart Rate

Eliminating
Noise

Locating
Biomarkers

Biomarkers

Figure 13: Workflow of separating respiration, heart-

rate, andmotion patterns from themixed radar signals.

The resulting heartbeat and breathwaveforms are iden-

tified.

3.4.4 Window Selection. The UWB radar X4 chip extracts

186 range bins representing reflection amplitudes in distance.

To reduce computing time, we use a window of size 𝑁 to

select a range bin subset before inputting the data into the

model. We select the 𝑁 consecutive bins with the highest

reflected signal power, as these are most likely to contain

human reflections. We choose a 30-bin section with higher

amplitudes, reducing computational time for model training.

This approach enables more effective detection and tracking

of human reflections in radar data.

4 IMPLEMENTATION AND EVALUATION

We conduct Medusa’s evaluation in two parts. First, we

compareMedusa’s custom-designed platform accuracy with

that of the COTS mmWave MIMO radar(as indicated in Ta-

ble 1) used previously in [11–13, 41–44]. Next, we evaluate

Medusa’s efficacy to measure the respiration and heart rate

of multiple diverse targets in real-time, in real-world envi-

ronments.

4.1 Medusa MIMO radar Micro-Benchmark

AOAaccuracy:We compare theAoA accuracy of theMedusa’s

MIMO radar with the COTS UWB and mmWave radars in

Table 1. We use a reflector box and position it at various

distances and angles (but at the same height as the radar)

measure the range and AoA of the strongest reflected sig-

nal, and compare it with the ground-truth. Fig. 14 shows

8
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the AoA performance. For AoA in LoS, measured at 5m dis-

tance, Medusa MIMO radars perform better than the COTS

mmWave radar. Median angular errors forMedusa is only 2

deg and amaxAoA error of 8.2 deg, while the COTSmmWave

radar’s AoA median errors are 6.2 deg, while max angular

error can go up to 12.5 deg.
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Figure 14: AoA accuracy.
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Figure 15: CDF of Latency.
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Figure 16: Wireless clock sync. in LoS and NLoS

System Latency and Wireless Coherency: Fig.15 shows a
median latency of 22.94ms for respiration waveform recon-

struction, from the time radar data was received, proving

that Medusa can indeed run in real-time.

Next, we show the efficacy of Medusa’s of wireless clock

synchronizationwithin reasonable ranges. As shown in Fig. 16(a),

the median carrier frequency offset (CFO) is 0.25Hz in LOS

and 0.3Hz in NLOS. Fig. 16(b) displays the phase offset during

the wireless synchronization of clock signals.

4.2 Experiment Setup and Baseline

Ground truth (GT): We employed Vernier’s breathing belt

[4] and heart rate sensor [2] as Ground Truth (GT) for vital

signs, which are also commonly utilized in prior research [7,

11, 13, 14, 44]. All the human participants in our evaluation

wear these sensors during experiments. Necessary consent

and IRB approvals were sought before all experiments. Fig 17

shows the overall experiment setup. The baseline TI radar

sensor was aimed at the human chest. Operating at a lower

frequency, UWB radars have wider beams that cover the

entire body, allowing for a flexible height as depicted in

Figure 17.

Baselines: In our evaluation, we employ two baselines. For

respiration pattern detection, we utilize prior work [11, 13,

44] that uses Novelda UWB radar as a baseline. For heart rate

monitoring, we compareMedusa with RFSCG [15], which

is implemented on the TI mmWave radar IWR1443 [1].

Data Collection: We collected data from 27 volunteers (14

men, 13 women) aged 21-34 years (average age 25), weighing

52-102 kg (average 81.2 kg), and ranging in height from 164-

187 cm (average 175 cm). Data collection took place in four

indoor locations, primarily in a lab measuring 18𝑓 𝑡 × 30𝑓 𝑡

(540 sq ft), which exceed the size of average US bedrooms.

Volunteers wore casual attire during 10-minute sessions, and

none reported cardiovascular issues. We collect data of each

person performing the following actions: (1) static dataset:
standing, sitting with their body oriented in different di-

rections. (2)mobile dataset: Arbitrary walking and jogging

across a room in different directions, standing up and sitting

down in continuous and staggered motion, jogging at the

same spot with different body orientations, and perform-

ing various hand gestures. In total, we collected 3.75TB of

data: 1.89TB from static activities and 1.86TB from mobile

activities. We split the data into training and test sets with

an 80:20 ratio, allocating approximately 3.04TB for training

and 710GB for testing. The model underwent training with

the designated training dataset and evaluation with the test

dataset.

4.3 Unsupervised model

Medusa leverages an unsupervised learning model to re-

cover human vital signals, and here we describe the network

architecture and training process in detail.

Network structure: The unsupervised multi-head attention

model includes a classifier and an encoder with a multi-head

attention layer, implemented using TensorFlow by Python

3.8. Binary cross-entropy is utilized to classify loss. We added

a multi-head attention layer before the Dense layer to assign

weights to eachMIMO antenna array, which helps the system

focus on the most significant input data from influential

antennas.

Figure 17: Experiment setup with MIMO radars, GT

respiration belt, heart rate sensor and IWR1443BOOST

mmWave sensor. And also the screen shield barrier for

NLOS experiments.

Training details: The model is trained on a PC featuring

an AMD Ryzen 6900 CPU and an RTX 3080 Ti graphics
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Figure 18: Top-view of experiment-setup with four 4x4

radar placements (marked in red).

card. Upon deploying the trained model, data is transmitted

from the baseboard to the PC through a high-speed Ethernet

interface. For a measurement duration of 2 minutes, the

collected data has a size of 1.8GB and requires approximately

2 hours of model training using a single RTX 3080 Ti graphics

card with 200 iterations. During training, datasets are split

80:20 for training and testing, using the leave-one-person-

out cross-validation (LOPO CV) technique. The model is

trained with the training dataset and evaluated with the test

dataset, iteratively executed for each individual, ensuring

each person’s data is used as the test dataset once. This

process is carried out iteratively for each participant in the

dataset, guaranteeing that each individual’s data is used as

the test dataset precisely once.

4.4 Performance Evaluation:

4.4.1 Medusa: Accuracy and Robustness. We begin evalu-

atingMedusa’s robustness to monitor the Respiration-Per-

Minute (BPM) of static and mobile users in LoS and NLoS

when they are oriented in different directions. The experi-

ment setup with the room layout, radar locations, items of

furniture, as well as distances between radars are shown in

Fig 18. The four 4 × 4 subarray of Medusa is located at cor-

ners and we named them SA-1, SA-2, SA-3 and SA-4. NLoS

experimental setup employs a common approach in that

we use screen shields as obstacles between the target and

radars rather than placing the target near the radars. This

configuration more accurately simulates real-world NLoS

conditions.

Waveform Recovery: Fig 19 displays the reconstructed

waveform from Medusa for a randomly chosen participant

positioned at 5 meters and facing left. The reconstructed

waveform closely resembles the actual ground-truth wave-

form, exhibiting a cosine similarity of 0.987. Fig 19(b) demon-

strates the increased complexity of respiration waveform re-

covery in Non-Line-of-Sight (NLoS) conditions, as evidenced

by the reduced cosine similarity of 0.966.

(a) Respiration waveform reconstructed for a moving target in LoS

(b) Respiration waveform reconstructed for a static target in NLoS

Figure 19: Respiration waveforms reconstructed by

Medusa.
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Figure 20: LoS Static targets: BPM with different ori-

entations. Comparison of Medusa (‘M’), Co-located

single-view MIMO radar (‘S’), and Baseline.

Static Line-of-Sight (LOS): Fig 20 presents the box-plot
of respiration accuracy for static users (measured individu-

ally) when they are either standing or sitting and facing two

different directions (body orientations) at distances 3m and

5m distance. The respiratory rate accuracy decreases at 5m

for the single-view 16 × 16 radar facing frontward, dropping

by 12.1% when compared to the accuracy when facing left.

The baseline’s performance is worse than the single-view

16× 16 radar due to its poor SNR, especially when the user is

5m away, facing either front or left.Medusa, on the contrary,

with 4 × 4 MIMO distributed subarrays compensates for the

drop in SNR (see Fig 17) when the target is 5m away by

combining signals from the other three radars, providing an

improvement of 5.8% and 18.5% over the baseline and single-

view deployments, respectively. The benefits of Medusa are

seen further when the target is oriented to the left and right

at the 5m mark. When the baseline and the single-view solu-

tions suffer, Medusa still estimates respiration with median

errors < 2.8 bpm.

Static None-Line-of-Sight (NLOS): To create NLoS con-

ditions, we manually place the barrier screen (refer to Fig 17)

in front of the back and right radars. Fig 21 shows the box-

plot for respiration errors for all the individuals standing at

the same 3m and 5m mark but oriented back and right (refer

to Fig 18). When participants face the back array, Medusa’s

median errors are 2.15 bpm at 3 meters and 2.33 bpm at 5
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Figure 21: NLoS static users: Respiration errors (bpm)

with different orientations.
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Figure 22: Respiration errors (bpm) for targets with

movements in LoS and NLoS.

meters. Meanwhile, when facing the right, the median errors

measured byMedusa are 2.21 bpm at 3 meters and 2.47 bpm

at 5 meters, a gain of 17.5% and 21.9% over single-view and

baseline solutions at 5 meters, respectively.

Mobility in LoS and NLoS:We next show the result when

targets are mobile in LoS and NLoS (2 covered radars) condi-

tions. Fig 22 showed the box plot of the average respiration

errors per target when walking and jogging in random di-

rections in LoS and in NLoS. In LoS, Medusa’s measured

errors are 2.15 bpm and 2.36 bpm duringwalking and jogging,

respectively, while in NLoS,Medusa’s measured median res-

piration errors are 2.67 bpm and 2.56 bpm, respectively. On

the other hand, the single-view (16× 16) single radar and the

baseline solutions suffer, especially in NLoS conditions, with

their respective median BPM errors increasing to 14.9% and

28%, respectively. Medusa delivers median gains of 10.3%

and 21.7%, and max. gains of 21% and 38% over the single-

view and baseline solutions, respectively.

4.4.2 Impact on Attention-weights in NLoS.. We show how

Medusamodifies attentionweights for each radar depending

on the received signal quality. In this experiment, we sequen-

tially block one subarray (SA) at a time (SA-1 to SA-4) and

measure the respiration of static targets at 3m. Fig 23 illus-

trates the normalized attention weight distribution when dif-

ferent SAs are obstructed.Medusa reduces attention weights

for radars with poor SNR (NLoS) and increases weights for

radars with higher SNRs (LoS). Low SNR SAs are given lower

preference, focusing instead on radars with better-received

signals.

4.4.3 Medusa in unknown environments. Next, we evaluate

Medusa’s ability to generalize to different environments
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Figure 23: Normalized attention weights when one of

the 4 × 4 subarray (SA) of Medusa in NLoS.

than where it was trained to ensure a true “in-the-wild” de-

ployment. We trainMedusa using data from a residence and

use the model in a university lab.

Targets in LoS: We perform static and mobility experi-

ments with various targets in the radars’ LoS. In the static

experiment, targets stand anywhere in the room, in any ori-

entation. In the mobility experiment, targets continuously

walk and jog within the room. Fig 24 displays BPM errors for

static and mobile experiments.Medusa’s median BPM errors

are 1.98 bpm for static targets and 2.12 bpm and 2.46 bpm

for jogging and walking, respectively. Medusa outperforms

the single-view and baseline solutions with accuracy gains

of 11.2% and 26%, respectively.

Targets in NLoS: We evaluate BPM errors for static and

mobile targets in NLoS conditions, as shown in Fig 25. With

two blocked radars, single-view and baseline solutions’ me-

dian errors shoot up to 2.67 bpm and 5.98 bpm for static

targets, with max errors of 18.3% and 38%, respectively, while

Medusa’s median error is 2.21 bpm, improving median accu-

racy by 2.4% and 20.8% over the other solutions. For mobile

targets,Medusa accuracy gains are 2.32 bpm and 19.2% for

jogging and 2.43 bpm and 24.4% for walking, over the single-

view and baseline solutions, respectively.
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Figure 24: Respiration errors (bpm) in LoS of Static and

Moving targets in the untrained environment.

4.4.4 Case of Multiple Targets. With multiple targets inside

a room, Medusa can extract each individual’s respiration
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Figure 25: Respiration errors (bpm) in NLoS of Static

and Moving targets in the untrained environment.
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Figure 26: Cosine similarity and BPM of respiration

rate detection for multiple targets.

waveforms by decomposing the composite RF signals. How-

ever, it cannot map these extracted waveforms to individual

targets. Mapping the recovered individual waveforms to spe-

cific targets requires continuous localization and tracking

of each target, which we leave as future work. Nonetheless,

we show Medusa’s ability to recover the individual respi-

ration waveforms and to accurately measure the individual

BPM by manually associating the recovered waveform to the

target. Fig 26 shows the cosine similarity of the recovered

waveforms for three mobile targets in a room and their BPM

accuracy. Median cosine similarity for the three waveforms

are 0.923, 0.934, and 0.9216, respectively, and median errors

are 2.14 bpm , 2.23 bpm, and 2.57 bpm.

Figure 27: Recovered waveforms of heart pulses. Red

dotted lines represent the ground-truth. Blue lines

show the recovered waveforms of heart pulses by

Medusa.
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Figure 28: Heart rate error (bpm) across different dis-

tances (0.5m - 9m) of static and jogging targets.

4.4.5 Measuring Heart Rate. Lastly, we demonstrateMedusa’s

heartbeat sensing capability. To comprehensively evaluate

heartbeat detection, participants were asked to perform ran-

dom motions at varying distances 28. We compare our re-

sults with the COTS mmWave TI radar [1] used by previous

work [13, 15] as the baseline. Fig. 27 illustrates the recovered

waveform, while Fig. 28 presents the heart rate error. At the

closest 0.5m distance, Medusa clearly offers the accurate es-

timation for both static subjects (3.22 bpm - front, 3.47 bpm -

left and right) and subjects with motion (3.77 bpm), surpass-

ing the baseline solution (4.87 bpm). As distance increases,

the performance of the baseline, which uses a single-view TI

mmWave radar, significantly worsens compared to Medusa,

with a widening discrepancy. The baseline achieved a heart

rate error exceeding 10 bpm when tracking moving subjects

at 9m, underscoring the limitations of single-view systems

in practical scenarios.

5 RELATEDWORK

Real-world applications demand robust human vital moni-

toring systems resilient to changes in target position, range,

orientation, motion, as well as environmental factors like

line-of-sight (LoS) and non-line-of-sight (NLoS) blockages.

RF-based health sensing: Research has made significant

advances in using RF to passively (contact-free) sense people

and their vital signs (i.e., human breathing and heart rates).

Radar sensing: Researchers in [11–13, 15, 41, 42, 44] have

leveraged the large channel bandwidths available in UWB

and mmWave bands to passively capture human breathing

and heart rate. However, with most of these solutions em-

ploying either the COTS UWB radar [3] with a single Tx/Rx

antenna that the operational range is limited to only 3-5m dis-

tance, and some of the work the mmWave radar array (4 Tx,

3 RX [1]) operating at a high (75GHz-77GHz) frequency, even

in LoS and within a narrow FoV of ≈50deg, making these

solutions inadequate for practical room-scale deployments,

especially with NLoS. Moreover, having a single radar addi-

tionally constrains the target to be oriented in a particular

direction (e.g., facing the radar) to measure the physiological

movements accurately.

On the other hand, solutions [19, 22, 32] that use two

single-antenna radars, or a single radar with two anten-

nas [29], require the two elements to be placed at specific

locations with respect to a human body (e.g., front and

back of a target) to eliminate signal-blockages caused by

human action and body orientation, providing the simplest

form of diversity, but are unable to offer practical ranges or

NLoS operation with single antenna elements. Other solu-

tions [6, 13, 18, 23, 35, 38, 43] that use COTS devices, while

capable of measuring vitals of multiple targets within an

enclosed space, can do so only when the targets are rea-

sonably stationary and facing the radar in LoS. In [13], the
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approach of using COTS mmWave sensor takes advantage

of a well-established correlation between HR/RR and motion

intensity, moving away from the traditional time-frequency

analysis, which is often disrupted by motion. However, it

faces challenges in NLoS conditions and multiple targets. Ad-

ditionally, [38] introduced a method that employs linear ICA

to decompose respiratory signals from multiple individuals

who remain stationary, such as those asleep in set positions.

Wi-Fi sensing: WiFi-based sensing solutions [20, 24, 39,

40] rely on Channel State Information (CSI) to capture the

minute displacements on a human body. However, with CSI

being extremely sensitive to the environment, these solutions

need extensive calibration and fingerprinting, making them

impractical for in-the-wild deployments.

Non-RF based health sensing: In addition to RF-based

sensing, researchers have explored acoustic [28, 31, 33, 34]

and camera-based[10, 25, 36] solutions to monitor breathing

and heart rates, respectively passively. However, they require

targets to be relatively static in LoS, facing the radar and are

impacted by background noise and human motion.

To the best of our knowledge, existing solutions cannot

simultaneously cater to the different dimensions of target

and environment dynamics, which are central to delivering

a robust and practical HVM solution.Medusa takes an im-

portant step in this direction towards robust HVM sensing.

6 CONCLUSION

In summary,Medusa presents a novelmulti-view 256-element

virtual MIMO radar system that facilitates robust and precise

distributed radar sensing across diverse target-environment

configurations. Our comprehensive experiments demonstrate

that Medusa significantly outperforms existing solutions in

terms of vital-sign measurement accuracy for both station-

ary and moving targets.Medusa lays the foundation for a

feasible, contact-free vital monitoring solution that can be

effectively implemented at scale in real-world settings.
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