PALMBENCH: A COMPREHENSIVE BENCHMARK OF COMPRESSED
LARGE LANGUAGE MODELS ON MOBILE PLATFORMS

Yilong Li', Jingyu Liu!, Hao Zhang', M Badri Narayanan', Utkarsh Sharma®, Shuai Zhang?,
Pan Hu?, Yijing Zeng!, Bangya Liu!, Jayaram Raghuram®, Suman Banerjee'
University of Wisconsin — Madison, ?Amazon Web Services AI, USA, 3Uber, USA

ABSTRACT

Deploying large language models (LLMs) locally on mobile devices is advan-
tageous in scenarios where transmitting data to remote cloud servers is either
undesirable due to privacy concerns or impractical due to network connectivity.
Recent advancements (MLC| 2023a; |Gerganovl, |2023) have facilitated the local
deployment of LLMs. However, local deployment also presents challenges, par-
ticularly in balancing the (generative) quality, latency, and throughput within the
hardware constraints of mobile devices. In this paper, we introduce our lightweight,
all-in-one automated benchmarking framework that allows users to evaluate LLMs
on mobile devices. We provide a comprehensive benchmark of various popular
LLMs with different quantization configurations (both weights and activations),
across multiple mobile platforms with varying hardware capabilities. Unlike tra-
ditional benchmarks that assess full-scale models on high-end GPU clusters, we
focus on evaluating resource efficiency (memory and power consumption) and
harmful output for compressed models on mobile devices. Our key observations
include: i) differences in energy efficiency and throughput across mobile plat-
forms; ii) the impact of quantization on memory usage, GPU execution time, and
power consumption; and iii) accuracy and performance degradation of quantized
models compared to their non-quantized counterparts; and iv) the frequency of
hallucinations and toxic content generated by compressed LLMs on mobile devices.

1 INTRODUCTION

Large Language Models (LLMs) such as ChatGPT (OpenAl, [2023)), Claude (Anthropicl2023)), and
Llama (Touvron et al.| 2023ajbic) are powerful generative models that are revolutionizing interactive
communication and various natural language processing tasks, including question-answering, docu-
ment summarization, abstract reasoning, and code auto-completion (e.g., Github Copilot (Github)).
LLMSs require significant computational and memory resources to run due to their huge number of
parameters (e.g., MT-NLG 530B (Smith et al., [2022))), making them more suitable for running on
cloud infrastructures with high-end powerful GPU clusters. While significant attention has been
dedicated to cloud-based LLMs, there is a growing need to run LLMSs on resource-constrained mobile
devices in order to obtain some key benefits. (1) Privacy and Security: Processing user data locally
on mobile devices helps protect user privacy and enhances data security. There is also less risk of data
breaches or unauthorized access to sensitive information. (2) No Cloud Reliance: By running LLMs
locally, mobile applications can reduce their dependence on cloud services for language processing
tasks. This can lead to cost savings and increased reliability, as the application’s functionality is not
reliant on the availability and performance of remote servers. (3) Offline Access: By running LLMs
on mobile devices, users can access powerful language processing capabilities even when they are
not connected (or have unreliable connection) to the Internet.

The rapidly flourishing LLM ecosystem, including various large models, architectures and frame-
works, presents both opportunities and challenges for developers and researchers interested in
deploying pre-trained LLMs on mobile devices. Existing efforts in on-device LLM inference have
primarily focused on model compression and efficient inference techniques,with a strong focus
on deploying models on edge SoCs (system-on-a-chip) equipped with GPUs and running Linux
systems (Lin et al.,|2024; \Gerganov, [2023; MLC, |2023ajb), particularly MLC (MLC, 2023a), which

is built on TVM (Chen et al., [2018)), and llama.cpp (Gerganovl, [2023). These approaches aim to
achieve a desired quality, latency, and throughput while operating within the constraints of the target
platform, e.g., available memory and power limitations. However, the challenges and opportunities of
efficiently deploying these large models on mobile platforms, such as smartphones or nano computers
(e.g., NVIDIA Jetson Orin Nano), remain largely unexplored.

Current LLM benchmarks primarily target the accuracy of large models on cloud clusters rather than
mobile devices (Zheng et al.[2023). Some papers on mobile devices typically examines a limited
range of models and platforms, often overlooking performance degradation and hallucination due to
quantization (Coplii et al.| 2023} [Laskaridis et al.| [2024).

To bridge this gap, we propose a comprehensive benchmarking framework to evaluate the overall
user experience of LLMs on mobile devices. This framework automatically tests various LLMs with
different compiler options (e.g., weight and activation quantization) across mobile platforms with
diverse hardware capabilities (see Table[I)). We systematically evaluate each LLM using a range of
metrics across efficiency, accuracy (generative quality relative to non-quantized models), and harmful
output dimensions. Our primary focus is on inference efficiency on mobile platforms, evaluating
the computation usage (CPU and GPU), latency, throughput, energy consumption, and memory
footprint of different models on different platforms (as shown in Figure[I). Along the accuracy
dimension, we evaluate quantized models on mobile devices using mainstream datasets like Natural
Questions (Kwiatkowski et al.,[2019) and SQuAD (Rajpurkar et al.l2016), employing exact match
and perfect match metrics to quantify performance degradation and ensure proper functionality for
basic use cases. Also, we evaluate the harmful outputs including hallucination and toxicity of LLMs
with existing benchmark datasets Li et al.| (2023b); [Lin et al.|(2022); |Luong et al.| (2024)).

LLaMa-2 (Touvron et al.|[2023b), LLaMa-3/3.1 (Dubey et al.|[2024), RedPajama (Computer||2023),
LLMs LLaMa-3.2 (Llamal[2024), Vicuna (Chiang et al.|[2023), TinyLlama (Zhang et al.|[2024),
Qwen2 (Bai et al.||2023), Mistral-7B (Jiang et al..|[2023), Gemma (Team||2024)

. Google Pixel 4 / Pixel 5a / Pixel 7, iPhone 15 Pro, iPhone 12 Pro, S22 Ultra,
Mobile Platforms

Orange Pi 5 (Pi), Nvidia Jetson Nano (Nano)

2-bit (MLC, llama.cpp),
Quantization 4-bit (MLC, llama.cpp), 5-bit (Ilama.cpp), 6-bit (llama.cpp), 8-bit (MLC, llama.cpp)
(Frantar et al.|[2022| Lin et al.}|2024]Li et al.| 2020| Dettmers & Zettlemoyer|[2023)

Table 1: Summary of LL.Ms, mobile platforms, and quantization configurations explored by our
benchmark.

- — - = N
/Alltomatinn Framework \ (Performance Metric

Xcode Instruments

‘
| 1 0-bit 2-bit 4-bit 5-bit 8-bit :l
___________________ .

[—] [-] | /W\ [Exact Match] IHallucinalion] [Throughput (Tuk/s)] |
inyLlama icuna 3
| t —> [Toxicity] [Pm\crEﬁiclchy] [Latency(ms)] |
||
[Q2] [W - e g drais aarat || [Multi-asks] [CPU/GPU Utillization] |
Model Bridge (adb) Inspector) ' __ __ __ __ — — — — — — —
[Llama-2] [Microsoft Phi-2] | | S ﬁodel_QumizaEn N
| iPhone | |
(Repajama | [Lema3ninz | 7 = | [GT"UI’-W“E] [GGML] [GPTQ] [AWQ]
.. | = |_’| S |
|

oS [Android][108] [Ubuntu]—»l

[¢ NVIDIA.
Platform Android iPhone Orange Pi Jetson Orin

Figure 1: Overview and workflow of PalmBench — our evaluation and benchmarking framework for
Large Language Models (LLMs) on mobile devices.

Unlike existing benchmarking efforts for LLM deployment on mobile devices, our study explores
and evaluates feasible pre-trained models with the most popular quantizations. We highlight various
combinations of LLM configurations suitable for mobile deployment (Zhang et al., 2024; \Computer,

2023)), along with several available quantization options (Lin et al., 2024} |[Frantar et al.| |2022; MLC|
2023a; Dettmers & Zettlemoyer}, [2023)).

We found that 4-bit quantization methods, such as group-wise (Yang et al., |2024), GPTQ (Frantar|
et al., [2022)), and AWQ (Lin et al.| 2024), can generally preserve the performance of LLMs while
reducing their size to one-quarter of the original non-quantized model. This configuration diversity
can potentially lead developers (and users) to make sub-optimal choices in terms of performance
and efficiency. Our benchmarking analysis, focused on resource usage during inference, provides
insights into efficient deployment strategies tailored for mobile platforms. These strategies include
joint considerations of 1) model architecture, 2) quantization strategy, and 3) model size. In summary,
the major contributions of our paper are:

* To enable a comprehensive evaluation of various LLMs, we first develop a lightweight, auto-
mated benchmarking framework that collects performance metrics from mobile devices via USB,
eliminating the need for additional equipment.

* We evaluate various quantized LLMs on mobile platforms with different hardware capabilities,
measuring their resource utilization, power consumption, throughput, and inference latency.

* We validate the knowledge and answering accuracy of quantized models compared to their non-
quantized counterparts, and investigate the potential issues of compressed models such as toxicity,
bias, and the generation of erroneous or random outputs (hallucinations).

* Finally, our benchmarking leads to several key observations, highlighting the quantization dif-
ferences across models, platforms, and frameworks. We also observed that the iOS platform
outperforms others in power efficiency, latency, and throughput for LLM inference[ﬂ

2 RELATED WORK

Our benchmarking study extensively evaluated prior efforts focused on optimizing LL.Ms for mobile
devices. These efforts include frameworks (MLC| 2023aib; |Gerganov), [2023)), the development of
smaller models (Computer, |2023} |Abdin et al., |2024; L1 et al., |2023c), and model quantization
techniques (Frantar et al.| 2022).

Large Language Models. LLMs like ChatGPT (OpenAlL |2023)), the Llama series (Touvron et al.,
2023ajc), Mistral (Jiang et al., 2023), Vicuna (Chiang et al., 2023) etc. are gaining substantial
influence in generative Al applications. While LLMs are undoubtedly driving Al advancements,
their sophisticated capabilities demand significant resources. Both power consumption and memory
requirements for training these models and generating predictions scale linearly with their size
(number of parameters), significantly increasing operational costs during inference.

The development of smaller models such as Google Gemma-2-2B (Team, [2024), Llama-3.2-
1B/3B (Llama, [2024), RedPajama-INCITE-3B (Computer, |2023)), Phi-2/Phi-3 (Abdin et al.,2024)),
and TinyLlama (Zhang et al.| 2024)) is providing enhanced options for resource-constrained mobile
devices or edge devices that require efficient

Quantization. Post-training quantization (PTQ) applies quantization to LLMs after they have been
fully trained, which is an effective compression method used to create smaller models for inference.
Many efforts have been made to optimize LL.Ms for more efficient storage and faster computation.
Group-wise quantization (Yang et al.,|2024) involves partitioning the weights of a neural network
into groups and quantizing each group independently. This allows the quantization process to be
more finely tuned to the distribution of weights within each group, specifically reducing I/O costs
and offloading on mobile platforms. GPTQ (Frantar et al.,[2022) goes one step further and proposes a
post-training weight quantization method that compresses LLM weights to 3 or 4 bits instead of 8
bits. Activation-aware Weight Quantization (AWQ) (Lin et al.} 2024) observe that there exists a small
subset of model weights called salient weights, characterized by larger activation magnitudes, plays a
crucial role in reducing the quantization loss of LLMs, if they are preserved with high precision.

Inference Engine. Although there are a lot of efficient inference frameworks, MLC-LLM (Machine
Learning Compilation) (MLC| |2023azb)) enables users to develop, quantize, and deploy LLMs across
various platforms, including mobile devices and web browsers. It leverages compiler accelerations

'We plan to release the code of our framework to facilitate reproducibility and extensions of our research.

and runtime optimizations for native deployment across platforms based on TVM (Chen et al., 2018).
LlaMa.cpp (Gerganovl, [2023)), developed in C++, offers a lighter and more portable alternative to
traditional Python-based frameworks. It supports multiple BLAS backends for fast processing and
employs a mixed set of quantizations, primarily focusing on K-Quants.

Metric Definition
CPU Utilization (%) Percentage of the total processor cycles consumed by LLM
GPU Utilization (%) Percentage of the total GPU computing resource during LLM inference

Memory Footprint (GB) Measurement of main memory used by the LLM application

Memory Utilization (%) Percentage of main memory used by the LLM application

Throughput (Tok / s) Number of output tokens per second generated by the LLM

Output Matching Accuracy degradation of the compressed model relative to the original model
Toxicity Toxicity score calculated on 25k sentences by Perspective API
Hallucination (%) Percentage of erroneous or random outputs not related to the questions

Table 2: Metrics for evaluating the performance of LLMs on mobile devices. Memory usage includes
both the model loaded to the memory and the framework program running on devices.

Benchmark. Most existing benchmark frameworks of LLMs focus on maximizing performance
across different model architectures and evaluating a model’s general world knowledge, question-
answering, and reasoning ability (Zheng et al.||2023; Hendrycks et al., 2021} |Rajpurkar et al., 2016;
Kwiatkowski et al.| 2019). Some existing studies on evaluating LLMs for mobile deployment are
limited in scope, focusing either on a single platform (e.g., (Copli et al.| (2023)) assesses various
models on iPhone) or evaluating online models instead of on-device inference (Lee et al., [2024)).
They fail to comprehensively examine resource efficiency and power consumption, which are crucial
for mobile deployment. MELTing (Laskaridis et al., [2024) is the closest to our work, evaluating
five LLMs on various devices and reporting throughput, power consumption, and basic accuracy
on Q&A datasets. However, MELTing does not comprehensively analyze resource utilization and
energy efficiency for popular quantization methods, nor does it explore the impact on GPU workload.
Furthermore, existing benchmark works ignore the toxicity, bias, and generation of erroneous or
randomized outputs (which always occur in quantized models). However, they are crucial factors
affecting user experience and are affected by different frameworks.

3 METHODOLOGY

To evaluate LLLMs on mobile devices, we created the PalmBench framework, which focuses on the
following three aspects:

1) Benchmark Automation. We developed an automated framework that uses Android Graphic
Inspector (AGI) (AGI), Xcode profiler, and Nvidia Visual profilers to trace execution data and analyze
runtime behavior across platforms when benchmarking LLM performance and resource utilization on
edge and mobile devices. PalmBench requires USB debugging to connect to Android phones and
iPhones.

2) Resource Utilization. Our primary focus is on the resource demands of different models
across various platforms—such as CPU, GPU, memory, and NPU — that significantly impact user
experience. Our study goes beyond resource demands, aiming to quantify the impact of different
quantization techniques on both performance and resource efficiency across various state-of-the-art
models.

3) Model Accuracy. While a model’s architecture mostly dominates its outputs, we observe
variations when applying different quantization methods on diverse devices. To validate the quantized
LLMs and quantify the accuracy degradation due to compression, we evaluate the knowledge and
answering accuracy of models using the Exact Match and F1 score compared with original models.
We also test these models on conventional tasks with open-sourced datasets (Rajpurkar et al., [2016}

Kwiatkowski et al.l |2019; Hendrycks et al.,2021). Moreover, we also investigate the potential issues
of toxicity and the generation of erroneous or randomized outputs that always occur in compressed
models and have not been thoroughly studied in previous work (Laskaridis et al., 2024)).

3.1 METRICS AND DATASETS

Table [2| summarizes all the metrics used in our benchmark. To evaluate the accuracy and correctness
of quantized LLMs, we use popular Question-Answering datasets such as SQuAD (Rajpurkar et al.|
2016) and Natural Questions (NQ) (Kwiatkowski et al.,2019), comparing their performance with
that of the original, non-quantized models. Additionally, we employ comprehensive benchmarks for
different tasks, including MTBench (Zheng et al., 2023) to compare their language understanding
and reasoning capabilities across different quantizations. Also, we measured foxicity by calculating
toxic score by using Perspective API (Perspective, 2020) and TET (Luong et al.,[2024), and evaluate
hallucination in each quantized LLM using HaluEval (Li et al.l2023a) and Truthful QA (Lin et al.|
2022) benchmarks. Appendix [D] and Appendix [F] provide some examples of these datasets for
benchmarking. These widely-recognized datasets ensure that our experiments and metrics are both
convincing and reproducible.

3.2 CHOICE OF LLMs

We have identified and converted several popular models for benchmarking on edge and mobile
devices using model weights from their official Huggingface or GitHub repositories. These models
are converted into experimental formats such as GGUF and K-quant for Llama.cpp |Gerganov|(2023)
or compiled using TVM |Chen et al.| (2018) for MLC frameworks MLC|(2023aib). Given that mobile
devices typically do not exceed 8GB of memory, it is impractical to test too large models, as they
would surpass these devices’ memory capacity. In our benchmark, we evaluated the various LLMs,
including Llama-2-7b-chat [Touvron et al. (2023b), Llama-3-8B-Instruct [Touvron et al.| (2023c)
Microsoft Phi2 |Abdin et al.|(2024)), Mistral-7B-Instruct|Jiang et al.| (2023), RedPajama-INCITE-Chat-
7B |Computer] (2023)), Vicuna Chiang et al.|(2023)), TinyLlama-1.1B-Chat-v1.0 Zhang et al.| (2024},
and Qwen?2 Bai et al.| (2023). The prebuilt weights for these models are readily available in the MLC
repository, which also offers options for compilation in various configurations.

3.3 INFRASTRUCTURE

Our benchmarking framework’s infrastructure includes essential components that automate device
interactions, model execution, data collection, and performance evaluation. It features both software
and hardware elements such as devices, system drivers, performance profilers, automated data
collection tools, and mobile phone user interfaces (Uls), representing a significant engineering effort,
as shown in Appendix [A] Table [6]

3.3.1 MOBILE DEVICES

We evaluate the LLMs on a range of devices with varying hardware capabilities, as listed in Table[6]in
Appendix, including Google Pixel 4 (P4), Pixel 5a (P5), Pixel 7 (P7), iPhone 12 Pro (IP12), iPhone
15 Pro (IP15), S22 Ultra (S22U), Orange Pi 5 (OPS) |Pi, and Nvidia Jetson Orin Nano (Nano) Nano,
covering mainstream operating systems.

3.3.2 INFERENCE ENGINE

We use two frameworks, MLC-LLM (MLC, 2023a3b) and llama.cpp (Gerganov, |[2023)), as inference
engines to execute LLMs on devices. Although many frameworks claim compatibility with mobile
devices, they often lack support for popular platforms or models. MLC-LLM (MLC||2023a3b) and
Ilama.cpp (Gerganov, |2023)) are two of the most popular frameworks that support a wide range of
platforms and models. Unfortunately, llama.cpp (Gerganovl 2023) is still incompatible with iPhone.

3.3.3 QUANTIZATION

Model quantization is primarily handled by the built-in quantization programs of frameworks. MLC
supports various quantization levels, including non-quantized float-16 (q0f16) and float-32 (q0f32),
3-bit quantization (q3f16_1), 4-bit quantization (q4f16_1), and 4-bit AWQ (q4f16_awq). The format
gAfB(_id) denotes ’A’ as the number of bits for weight storage and 'B’ as the number of bits for
activation storage. llama.cpp supports quantization using its GGUF format, which employs a type of
group-wise quantization known as K-quant and supports more quantization methods (1.5-bit, 2-bit,
3-bit, 4-bit, 5-bit, 6-bit).

3.3.4 PROMPT INPUT

For platforms like Orange Pi 5 |Piland Nvidia Jetson Nano |[Nano|using Ubuntu, we can only use the
Command Line Interface (CLI). Benchmark scripts are running, and prompt texts are transferred
via USB serial ports. On mobile platforms, such as iPhones and Android devices, we have used
custom-developed Apps based on MLC’s examples MLC (2023a) that automatically fetch prompts
from text files and initiate the touch events to interact with the Apps. Prompt texts are from datasets
listed in 311

3.3.5 CONTROL AUTOMATION

Control operations are predominantly conducted through the Android Debug Bridge (ADB) for
Android devices. Due to the limitations of the built-in Android Studio profilers in monitoring GPU
usage, we have employed the Android GPU Inspector (AGI) tool |/AGI, developed by the Android
team, to track resource utilization metrics such as CPU, GPU, memory, energy, and latency. Raw
data traces are extracted from AGI and transferred via ADB. iOS primarily used Xcode’s profiling
tools and a custom plugin to measure GPU utilization. The GPU measurement plugin, a derivative
development based on the IOKit plugin |Tan| (2018)), displays real-time GPU utilization within the
app. Xcode offers a comprehensive performance analysis tool, Instruments, which measures CPU
utilization, memory usage, execution time, and energy consumption.

3.3.6 GPU DRIVER

Although MLC-LLM MLC]| (2023agb) and llama.cpp |Gerganov| (2023) support various drivers;
OpenCL is the preferred and most mature GPU driver commonly used for both Android phones and
Ubuntu-based edge computing devices. The iPhone utilizes Apple’s proprietary Metal driver, which
is well supported by both MLC ML(| (2023a) and TVM |Chen et al.| (2018). Nvidia Jetson Nano
device leverages its own CUDA with highly optimized driver Nano|

3.3.7 EQUIPMENTS

In addition to resource usage, we also look into energy efficiency, a critical factor impacting user
experience. We employ two complementary devices to comprehensively evaluate the effects of
quantization on power consumption and the distribution of device temperature. For thermal behavior
analysis, we utilize the FLIR C5 thermal imaging camera |Flir| (2020) and a professional USB power
meter for accurate power consumption measurements. This enables us to investigate the energy
efficiency and thermal behavior of mobile platforms across different models and quantization methods,
which are crucial factors affecting user experience.

4 EXPERIMENTS

We present the most significant benchmarking results for LLMs across various models and platforms
(outlined in Section [3) here, and provide additional results in the Appendix.

4.1 EXPERIMENTAL SETUP

‘We evaluate the LLLMs on various devices detailed in Section E} MLC (MLC| 20234a) is compatible
with all platforms (Apple, Android, and Linux Edge), whereas llama.cpp |Gerganov| (2023)) is limited
to deployment on Android and Ubuntu systems. Since our benchmarking focuses on mobile devices,
we concentrate on models that function correctly and are suitable for size. For example, the 0-bit
Llama-2-7b-hf model, which occupies 13.11GB, is impractical for existing mobile devices. Some
models come in different scales, such as the Vicuna 13B model and Vicuna-7B. However, even with
3-bit quantization, the Vicuna 13B model’s memory usage exceeds 6GB, making it too large for
mobile devices. Quantization methods primarily rely on built-in framework configurations. For a fair
comparison, we standardize all models with a temperature setting of 0.2—the default value—and
limit the context window to 4096.

4.2 RESOURCE UTILIZATION

We first evaluate the impact of quantization on resource efficiency using the MLC and llama.cpp
frameworks on Android phones and edge devices for the models detailed in previous sections.

Memory Utilization: LLM inference is inherently memory-bound, and its memory utilization can
be reduced significantly by memory bandwidth quantization, which reduces the precision of weights
and activations.

Gemma- 22B|

Llama2-7B [Mistral-7B C_JTinyLlama-1.1B CJphi2 [m]
— e I M TinyLlama-1.18 [Qwen2-7B

[EILIama3/3.1-8B] Vicuna-7B I Gemma- 2-2B
[EELiama3.2-38 [EPhi2 IR cdPajama-Chat-3B)

MlCam2 78 ElM
[ELlama3/3.1-85 IV

o & o o

Avg. Memory Usage (GB)
o b & o =

Avg. Memory Usage (GB)

3-bit (q3f16) 4-bit (q4f16) 92 K (2-bit) q3_K_M (3-bit) q4_K_M (4-bit) q5_K_M (5-bit)

(a) MLC (b) llama.cpp

Figure 2: Average memory usage (GB) while running MLC and llama.cpp.

S " [mNq3f16-MLC Bq4f16-AWQ

£80% mq4f16-MLC Bg4f16-GPTQ

z 2

3} P4 Psa P7 S22U IPI2 IPIS OPS Nano (5 P4 P5a P7 S22U IPI2 IPI5 OP5 Nano
(a) CPU (b) GPU

Figure 3: CPU and GPU usage during inference of RedPajama-INCITE-3B across different quantiza-
tions.

To keep the models in suitable size with iPhones (iPhone 12 Pro and iPhone 15 Pro) and Android
phones (Pixel 4/5a/7, Samsung S22 Ultra), we are only able to evaluate the total memory usage of
models quantized by 3-bit and 4-bit in the MLC framework. Figures [2(a)land [2(b)]illustrate the
average memory usage of various models when using MLC and llama.cpp across different platforms.
We observed that for a given model and framework (MLC or llama.cpp), each platform’s total
memory utilization remains consistent. Based on this observation, we compare the memory usage
with different platforms (iPhone, Android, and Edge). The results reveal that higher quantization
levels invariably consume more memory, while lower quantization than 4-bit significantly reduces
memory needs. There is a slight difference in the MLC framework’s total memory usage; it is lower
on iPhones and higher on Android devices. Additionally, the Jetson Orin Nano uses less memory
than the Orange Pi, reflecting CUDA's greater efficiency compared to OpenCL, as shown in Figure[§]
The memory usage of MLC and llama.cpp varies across platforms, with llama.cpp typically uses less
memory than MLC. This difference is likely due to llama.cpp’s C++ implementation and command
line interface (CLI) save resources, maintaining similar memory usage on both Android and Edge
devices.

CPU and GPU Utilization: LLM execution depends on the computational resources of mobile
platforms, with CPUs handling data transfer and model offloading between memory and GPUs, which
are primarily used for inference. Both MLC and llama.cpp supports GPU-based model inference. We
measured CPU and GPU activities to examine the impact of quantization on reducing memory traffic
and GPU workload, with findings illustrated in Figure[3] The results show CPU and GPU utilization
varies across different models and platforms. Notably, 3-bit quantization results in lower CPU and
GPU usage, likely due to decreased data transfers from memory and a reduced inference workload
on the GPU. Additionally, the iPhones exhibited lower resource utilization than other test platforms,
indicating the potential for optimization and efficiency of LLM deployment. We also gathered GPU
traces through automated benchmarking tools and charted the GPU utilization timeline to examine
how GPU workloads vary when running identical models with different quantization methods, as
depicted in Figure] The findings reveal that models with 4-bit quantization utilize more GPU duty

Figure 4: GPU Utilization (%) timeline for 3-bit and 4-bit quantized RedPajama models on Google
Pixel 7.

[FIRedPajama-3B-q4f16 [|RedPajama-3B-q3f16|

100% T ———mm T
80%
60%
40%
20%
3

0 1

GPU Usage (%)

Time (ns x 104

[BGPU write | |GPU read| [BEGPU write | |GPU read|

—_ —
(e w

Speed (GB/s)
W

Speed (GB/s)

o

1 2 43 4
Time (ms x 107)

(=]

Time (n‘%s X 104)
(a) Llama-3-8B-q3f16 (b) Llama-3-8B-q4f16

Figure 5: GPU memory read/write speed while running LL.aMa-3-8B-Instruct in 3-bit and 4-bit
quantization on Pixel 7.

B3 16 MLC BlgA16MLC] | O | [EE16-MLC BlgA16-MLC]
(0]
B4
>
% 2
=0 Y -
© '\6 &\ O 0(\e O &\ ,3(\0
@ PS‘&O » &9 QE @ PS\& O‘é\g X
(a) Llama-3-8B for all platforms (b) Gemma-2B for all platforms

Figure 6: Measured memory usage (GB) across different platforms using Llama-3-8B and Gemma-
2-2B by MLC LLM to compare the memory usage between large model (Llama-3-8B) and small
model (Gemma-2-2B).

cycles than those with 3-bit quantization, thereby consuming more GPU time. Additionally, higher
quantization requires increased energy and computational resources for inference.

To explore how quantization affects GPU memory read and write operations, Figure [3]illustrates the
memory throughput for read and write operations to the GPU while operating LLaMa-3-8B-Instruct-
q3f16 and LLaMa-3-8B-Instruct-q4f16. The operation of LLaMa-3-8B-Instruct-q4f16 demands
additional GPU workload and writing cycles. This observation confirms the hypothesis that higher

quantization escalates GPU memory data traffic, with inference performance constrained by memory
throughput.

100 T T

= L 1ama2-7B-q3f16 [Phi2-q4f16
% IR edPajama-INCITE-3B-q4f16 [Z]LlaMa-3-8B-q3f16
= [IMistral-7B-q3f16 Il TinyllaMa-1.1B-q4f16
‘a 50 [l Vicuna-7B-q4f16
5
2
=
=

P12 IP15 P4 P5a P7 S22U OP5 Nano
Figure 7: Throughput (tok/s) for MLC across all devices.

4.3 THROUGHPUT AND LATENCY

In addition to resource utilization, we analyzed latency (ms) and throughput (tok/s), which are crucial
factors influencing user experience. Higher throughput and lower latency indicate faster model
output. Figure[7]shows the throughput (tok/s) across all platforms on MLC. Smaller models typically
offer higher throughput; for instance, RedPajama-INCITE-3B and TinyLlaMa-1.1B achieve higher
throughput than larger models, indicating that smaller sizes execute more quickly on mobile devices.
Moreover, the results indicate that iPhones, particularly when running Llama-2-7B and Llama-3-8B
models, deliver significantly higher throughput compared to other devices. Even the three-year-old
iPhone 12 Pro outperforms newer Android devices and Nvidia’s Jetson Orin Nano in maintaining
relatively high throughput, demonstrating metal-accelerated inference performance. When running
Mistral-7B-q3f16 and Phi2-q4f16, differences in prefilling and decoding throughput are observed
despite their similar sizes. The model with fewer parameters and higher quantization decodes faster
than the larger, lower-bit quantized model, highlighting the impact of the model architecture.

4.4 OUTPUT MATCHING AND CORRECTNESS

Quantization often compromises model accuracy, particularly when using lower-bit representations.
To validate the correctness and assess the performance degradation of quantized models, we use
question data from the SQuAD (Rajpurkar et al.,[2016)) and Natural Question (Kwiatkowski et al.]
[2019) dataset to calculate the Exact Match and F1 score, using the output of the original non-quantized
model as a reference. The exact match and F1 score results are shown in Figure[§] Moreover, our
observation also shows that 4-bit and 6-bit quantization mostly maintains performance compared to
the original non-quantized model, with 4-bit quantization requiring less memory and computational
resources (Figure 2(2)]2(D)]). Interestingly, the 5-bit and 3-bit models underperformed slightly.
K-quant (ggml) 3-bit model produced more hallucinations and toxic content than the 2-bit model.

Although the K-quant (ggml) 5-bit model is larger than the 4-bit model, it showed more performance
degradation than all 4-bit quantization.

= IlL1ama2-7B [JRedPajama-Chat-3B [Vicuna-7B [lQwen2-7B
s L lama3/3.1-8B [Phi2 M istral-7B
=
Q
S 60%
51
5 20%
o™ o ot ot o ot o ot o
N s B 5 o Q> Q¥ Q¥ < &

(a) Exact Match

[@Llama2-7B [JRedPajama-Chat-3B [Vicuna-7B [EllQwen2-7B

S L lama3/3.1-8B [IPhi2 EMistral-7B
El
<
s
g
>
m
o o NS o o o N o o
A > » 5 ¢ Q> Q¥ Q¥ s
o &t &t S s

(b) F1 score

Figure 8: Scores of exact match and F1 score to examine the performance loss after models are
quantized.

4.5 TASKS

To evaluate the performance of quantized models across various tasks, we utilize MT-bench
2023)), which employs a predefined multi-turn question set to evaluate models across eight
categories: Reasoning, Math, Coding, Extractions, STEM, Humanities, Writing, and Roleplay.
Figure [9 shows that models with higher bit quantization generally achieve better scores across all
categories. In contrast, lower-bit quantization (2-bit, 3-bit, 4-bit) still performs well in humanities,
writing, and extraction tasks. For users with devices that have limited resources, particularly those
with less than 4GB of memory, 2-bit or 3-bit quantization can still provide an adequate user experience
in these tasks or for simple Q&A applications.

—— LLaMa2-7B-fpl6 ——LLaMa2-7B-q5_K_M —— Llama-2-7b-chat-hf-q0f16

—— LLaMa2-7B-g4_K_M —=— LLaMa2-7B-q3_K_M LLaMa2-7B-qg4_GPTQ — LLaMa2-7B-q4_AWQ o Llama-2-Tb-chat-hf-q4f16 |
LLaMA2-7B-q2_K LLaMa2-7B-q3_K_M LLaMa2-7B-g4 K M LLaMa2-7B-q3_GPTQ -
Reasoning LLaMa2-7B-q3_AWQ LLaMa2-7B-q3_K_M Llama-2-7b-chat-hf-q3f16_1
Reasoning
Math Roleplay Math Roleplay
Math Roleplay
4 \
. . Codin © Writin,
Codi W g g
odne l 02 4 ¢ §/10 riing Coding § \Writing LO <) 4/6/ 10
L 024 6 80 |
Extraction Humanities Extraction \(,,/'/”uma“mcs Extraction Humanities
STEM STEM STEM
(a) K-quant used by llama.cpp (b) K-quant vs. AWQ vs. GPTQ (3- (c) MLC
bit, 4-bit)

Figure 9: MTBench scores in different categories using Llama2-7B with various quantizations.

4.6 POWER CONSUMPTION AND TEMPERATURE

Model quantization greatly reduces memory usage and GPU execution time, as LLM inference is
largely memory-bound. One interesting observation is that quantization also impacts power consump-
tion and device temperature on mobile platforms, as shown in Table[3] With 4-bit quantization, higher
resource usage leads to increased temperature and power consumption, with the 4-bit Llama-3.2-3B
model consuming 25.2% more power than its 3-bit counterpart.

Table 3: Evaluation of temperature and power consumption during inference of Llama3-8B across
different platforms

Llama-3.2-3B 3-bit quantization

Platforms Pixel 4 Pixel 5a Pixel 7 S22 Ultra iPhone 12 Pro iPhone 15 Pro

Peak Temp. (°) 47.8 53.2 52.1 52.8 47.3 453

Avg. Temp. (°) 28.3 28.7 28.5 27.2 27.2 25.3

Power Consumed (mWh) 13.32 12.98 14.54 13.25 11.21 10.13

Llama-3.2-3B 4-bit quantization

Platforms Pixel 4 Pixel 5a Pixel 7 S22 Ultra iPhone 12 Pro iPhone 15 Pro

Peak Temp. (°) 53.1 54.8 52.6 48.7 47.2 46.3

Avg. Temp. (°) 28.2 29.2 30.3 27.8 26.4 24.2

Power Consumed (mWh) 14.23 13.51 14.68 15.26 13.12 13.05

4.7 HALLUCINATION AND TOXICITY

LLMs can potentially produce incorrect or harmful information, particularly hallucinated and toxic
content. We evaluate Toxicity and Hallucination using GPT-40 OpenAl| (2023) and Claude-3.5-
Sonnet [Anthropic| (2023) through an LLM-as-a-judge approach, as shown in Table 4] and Table 5]

Lower bit quantization typically leads to increased hallucinations and toxicity. However, 3-bit
quantization performs worse than both 2-bit group-wise quantization and all 4-bit methods, exhibiting
more hallucinations and toxic content. Among the 4-bit quantization methods (GPTQ (Frantar et al.,
2022), ggml (Gerganovl, 2023), AWQ (Lin et al.| | 2024)) and FT (Nvidia, [2019)), GPTQ, AWQ, and
FT show similar performance, while ggml performs slightly worse. Examples of hallucinated and
toxic outputs are provided in Tables[TT|[I2]in Appendix [{

Table 4: Evaluation of Hallucination Outputs across Different Quantization Levels in Llama3-8B.

Quantization | 2-bit | 3-bit | 4-bit (GPTQ) | 8-bit | 4-bit (ggml) | 4-bit (AWQ) | 4-bit (FT)

Halucination | 34.7% | 27.5% 9.1% 7.9% 12.5% 8.9% 8.7%

TruthfulQA | 76% | 73% 92.1% 91.4% 90.1% 92.3% 91.5%
Toxicity | 46.243 | 64.098 28.679 23.965 41.107 30.072 29.405

Table 5: Evaluation of Hallucination Outputs across Different Quantization Levels in Google Gemma-

2-2B.
Quantization | 2-bit | 3-bit | 4-bit (GPTQ) | 8-bit | 4-bit (ggml) | 4-bit (AWQ) | 4-bit (FT)
Halucination | 42.2% | 27.5% 9.1% 7.9% 12.5% 8.9% 8.7%
TruthfulQA | 72% | 70.2% 91.1% 92.4% 85.1% 89.3% 90.5%
Toxicity | 36.121 | 63.087 25.045 22.102 24.207 32.202 23.405

5 CONCLUSIONS

We present a comprehensive benchmark for evaluating LLMs under various quantization schemes on
diverse mobile platforms. Our lightweight, all-in-one automated benchmarking framework enables

users to evaluate mobile devices via USB, providing extensive metrics and datasets. This study
uniquely focuses on resource efficiency for mobile GPUs, contrasting with traditional high-end GPU
cluster evaluations. Key findings highlight the superiority of iOS platform in energy efficiency and
throughput, and quantization’s effectiveness in reducing resource requirements. We also examine
accuracy and potential issues in quantized models, including toxicity and erroneous outputs. This
research provides crucial insights for efficient LLM deployment in mobile environments, addressing
previously overlooked aspects of on-device LLM performance.

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 Technical Re-
port: A Highly Capable Language Model Locally on Your Phone. arXiv preprint arXiv:2404.14219,
2024.

AGI. Android GPU Inspector (AGI). https://developer.android.com/agi.

Anthropic. Introducing the next generation of Claude. https://www.anthropic.com/news/
claude-3-family, 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, and
otehrs. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan, Haichen
Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. TVM:
An Automated End-to-End Optimizing Compiler for Deep Learning. In In Proc. of the 13th OSDI,
2018.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality, March 2023. URL
https://1lmsys.org/blog/2023-03-30-vicuna/.

Together Computer. RedPajama: An Open Source Recipe to Reproduce LLaMA training dataset,
2023. URL https://github.com/togethercomputer/RedPajama-Data.

Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit Inference Scaling Laws,
2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
2024. URL https://arxiv.org/abs/2407.21783.

Flir. FLIR C5 Compact Thermal Imaging Camera. https://www.flir.com/products/c5/
?vertical=condition+monitoring&segment=solutions, 2020.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate Post-training
Compression for Generative Pretrained Transformers. arXiv preprint arXiv:2210.17323,2022.

Georgi Gerganov. llama.cpp. https://github.com/ggerganov/1lama.cpp, 2023.
Github. Copilot. |https://github.com/features/copilot.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring Massive Multitask Language Understanding, 2021.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7B. arXiv preprint arXiv:2310.06825, 2023.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, et al. Natural Questions: a Benchmark for Question Answering Research. Transactions of
the Association of Computational Linguistics, 2019.

https://developer.android.com/agi
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://lmsys.org/blog/2023-03-30-vicuna/
https://github.com/togethercomputer/RedPajama-Data
https://arxiv.org/abs/2407.21783
https://www.flir.com/products/c5/?vertical=condition+monitoring&segment=solutions
https://www.flir.com/products/c5/?vertical=condition+monitoring&segment=solutions
https://github.com/ggerganov/llama.cpp
https://github.com/features/copilot

Stefanos Laskaridis, Kleomenis Katevas, Lorenzo Minto, and Hamed Haddadi. MELTing point:
Mobile Evaluation of Language Transformers. CoRR, abs/2403.12844, 2024. doi: 10.48550/
ARXIV.2403.12844. URL https://doi.org/10.48550/arXiv.2403.12844.

Juyong Lee, Taywon Min, Minyong An, Changyeon Kim, and Kimin Lee. Benchmarking Mobile
Device Control Agents across Diverse Configurations. In /CLR 2024 Workshop on Generative
Models for Decision Making, 2024.

Junyi Li, Xiaoxue Cheng, Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. HaluEval: A Large-Scale
Hallucination Evaluation Benchmark for Large Language Models. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, EMNLP, pp. 6449-6464.
Association for Computational Linguistics, 2023a. doi: 10.18653/V1/2023. EMNLP-MAIN.397.
URL |https://doi.org/10.18653/v1/2023.emnlp-main.397.

Junyi Li, Xiaoxue Cheng, Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. HaluEval: A Large-Scale
Hallucination Evaluation Benchmark for Large Language Models. In The 2023 Conference on
Empirical Methods in Natural Language Processing (EMNLP 2023), 2023b.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat
Lee. Textbooks are all you need II: phi-1.5 technical report. CoRR, abs/2309.05463, 2023c. doi:
10.48550/ARXIV.2309.05463. URL https://doi.org/10.48550/arXiv.2309.05463.

Yuhang Li, Xin Dong, Sai Qian Zhang, Haoli Bai, Yuanpeng Chen, and Wei Wang. Rtn: Reparame-
terized ternary network. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI
2020), volume 34, pp. 4780—4787, 2020.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. AWQ: Activation-aware Weight Quantization
for LLM Compression and Acceleration. In MLSys, 2024.

Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring How Models Mimic Human
Falsehoods. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), 2022.

Meta Llama. Introducing Llama 3.2. https://ai.meta.com/blog/
1lama-3-2-connect-2024-vision-edge-mobile-devices/, 2024.

Tinh Luong, Thanh-Thien Le, Linh Ngo, and Thien Nguyen. Realistic Evaluation of Toxicity in
Large Language Models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings
of the Association for Computational Linguistics ACL 2024, pp. 1038—1047. Association for
Computational Linguistics, August 2024. doi: 10.18653/v1/2024.findings-acl.61.

MLC. Machine Learning Compilation (MLC)). |https://11m.mlc.ai/docs/, 2023a.
MLC. MLC-LLM Github Repo. https://github.com/mlc-ai/mlc-11m, 2023b.

Jetson Orin Nano. Nvidia Jetson Orin Nano. https://developer.nvidia.com/embedded/
jetson-nano.

Nvidia. FasterTransformer, 2019. URL https://github.com/NVIDIA/FasterTransformer.

OpenAl. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

Perspective. Perspective APIL. https://github.com/conversationai/perspectiveapi, 2020.

Orange Pi. Orange Pi 5B. http://www.orangepi.org/html/hardWare/
computerAndMicrocontrollers/details/Orange-Pi-5B.html.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100, 000+ Questions
for Machine Comprehension of Text. In EMNLP, 2016.

https://doi.org/10.48550/arXiv.2403.12844
https://doi.org/10.18653/v1/2023.emnlp-main.397
https://doi.org/10.48550/arXiv.2309.05463
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://llm.mlc.ai/docs/
https://github.com/mlc-ai/mlc-llm
https://developer.nvidia.com/embedded/jetson-nano
https://developer.nvidia.com/embedded/jetson-nano
https://github.com/NVIDIA/FasterTransformer
https://doi.org/10.48550/arXiv.2303.08774
https://github.com/conversationai/perspectiveapi
http://www.orangepi.org/html/hardWare/computerAndMicrocontrollers/details/Orange-Pi-5B.html
http://www.orangepi.org/html/hardWare/computerAndMicrocontrollers/details/Orange-Pi-5B.html

Shaden Smith, M ostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, Elton Zhang, Rewon
Child, Reza Yazdani Aminabadi, Julie Bernauer, Xia Song, Mohammad Shoeybi, Yuxiong He,
Michael Houston, Saurabh Tiwary, and Bryan Catanzaro. Using DeepSpeed and Megatron to Train
Megatron-Turing NLG 530B, A Large-Scale Generative Language Model, 2022.

Ricky Tan. GPUUtilization. https://github.com/rickytan/GPUUtilization, 2018.

Gemma Team. Gemma 2: Improving open language models at a practical size. ArXiv, abs/2408.00118,
2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, et al. LLaMA:
Open and Efficient Foundation Language Models. ArXiv, abs/2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti, et al. Llama 2: Open Foundation and
Fine-Tuned Chat Models, 2023b.

Hugo Touvron, Louis Martin, et al. Llama 2: Open Foundation and Fine-Tuned Chat Models. ArXiv,
2023c.

Jiaming Yang, Chenwei Tang, Caiyang Yu, and Jiancheng Lv. GWQ: Group-Wise Quantization
Framework for Neural Networks. In Asian Conference on Machine Learning. PMLR, 2024.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. TinyLlama: An Open-Source Small
Language Model, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LL.M-as-a-judge with MT-Bench and Chatbot Arena, 2023.

Tolga Coplii, Marc Loedi, Arto Bendiken, Mykhailo Makohin, Joshua J. Bouw, and Stephen Cobb. A
Performance Evaluation of a Quantized Large Language Model on Various Smartphones, 2023.

https://github.com/rickytan/GPUUtilization

APPENDICES

A SPECIFICATIONS OF TESTING DEVICES

We evaluate the LLMs on a range of devices as listed in Table[f] including Google Pixel 4 (P4), Pixel
5a (PS), Pixel 7 (P7), iPhone 12 Pro (IP12), iPhone 15 Pro (IP15), S22 Ultra (S22U), Orange Pi
5 (OP5)|Pi, and Nvidia Jetson Orin Nano (Nano) covering mainstream operating systems.

Table 6: Mobile and edge devices for evaluation.

Device SoC Memory (GB) Framework Support
i0OS
iPhone 12 Pro A14 Bionic 6GB MLC
iPhone 15 Pro A17 Bionic 8GB MLC
iPhone 16 Pro A18 Pro 8GB MLC
Android
Pixel 4 Snapdragon 855 6GB MLC/llama.cpp
Pixel 5a Snapdragon 765G 6GB MLC/llama.cpp
Pixel 7 Exynos 5300 8GB MLC/llama.cpp
S22 Ultra Snapdragon 8 Gen 1 8GB MLC/llama.cpp
Ubuntu
Orange Pi 5 RK3588 8GB MLC/llama.cpp
Jetson Orin Nano NVIDIA Orin 8GB MLC/llama.cpp

B MOBILE DEVICE TEMPERATURE

Figure 10: Temperature while a Google Pixel is running Llama2-7B-Instruct (3-bit).

C CPU, GPU, AND MEMORY PROFILING DATA STRUCTURE

Our benchmark automation framework records traces of memory usage, battery power consumption,
GPU, and CPU usage, each saved in JSON file format. An example of a measurement trace is shown
below.

{
"clock ts alignment": {
"ts": [
3325003895500,
1711394177981328752,
3325001559615,
1711394177983665366,
3325003896334,
3325003564096
]

} ’
"CPU memory": {

"ts": [T,

"total”: [],

"cached”: [1],
"buffer”: []

}7
"battery”: {3},

"GPU memory": {
”tS”: [],
"size": []

}

n

PU frequency”: {
"ts": [1,
"frequency": []
3,

"GPU counters": {
"ts": [1,
"clocks": [],
"utilization": [1],
"bus": [1],
"read”: [1],
"write"”: []

D DATASETS

» Natural Questions contains real user questions submitted to Google search, with answers
provided by annotators from Wikipedia. NQ is designed to train and evaluate automatic
question-answering systems.

* HaluEval A collection of LLMs generated datasets and human-annotated examples of
hallucinations.

* Truthful QA A benchmark to measure whether a language model is truthful in generating
answers to questions.

E OUTPUT MATCHING

The objective of the Output Matching in our benchmark is to verify the accuracy and proper alignment
of model outputs once the models are quantized in different quantization methods (Frantar et al.| [2022;
Yang et al.| 2024; Lin et al., 2024)). The questions and context used in the datasets are sourced from
SQuAD (Rajpurkar et al2016) and Natural Questions (Kwiatkowski et al.,|2019) with reference
data consisting of answers from the original large models prior to quantization.

Here are some examples of Output Matching Datasets:

F ToXICITY AND HALLUCINATION

We evaluate hallucinations of quantized LLMs using the ChatGPT generated samples from the
HaluEval L1 et al.| (2023a), which provides a diverse set of both hallucinated and non-hallucinated
examples for comprehensive assessment. An example of hallucination is presented in Table [I0}

Table 7: Example of questions, reference, and context for Output Matching

Context: Super Bowl 50 was an American football game to determine the champion of the
National Football League (NFL) for the 2015 season. The American Football Conference (AFC)
champion Denver Broncos defeated the National Football Conference (NFC) champion Carolina
Panthers 24:10 to earn their third Super Bowl title. The game was played on February 7, 2016,
at Levi’s Stadium in the San Francisco Bay Area at Santa Clara, California. As this was the

50th Super Bowl, the league emphasized the golden anniversarywith various gold-themed
initiatives, as well as temporarily suspending the tradition of naming each Super Bowl game
with Roman numerals (under which the game would have been known as Super Bowl L), so that

the logo could prominently feature the Arabic numerals 50.

Question: Where did Super Bowl 50 take place?

Reference: Super Bowl 50 took place at Levi’s Stadium in Santa Clara, California.

Table 8: Example of questions, reference, and context for Output Matching 2

Context: Teachers that exhibit enthusiasm can lead to students who are more likely to

be engaged, interested, energetic, and curious about learning the subject matter. Recent

research has found a correlation between teacher enthusiasm and students’ intrinsic motivation

to learn and vitality in the classroom. Controlled, experimental studies exploring intrinsic
motivation of college students has shown that nonverbal expressions of enthusiasm, such as
demonstrative gesturing, dramatic movements which are varied, and emotional facial expressions,
result in college students reporting higher levels of intrinsic motivation to learn. Students

who experienced a very enthusiastic teacher were more likely to read lecture material outside

of the classroom.

Question: What is dramatic gesturing an example of?

Reference: Dramatic gesturing is an example of nonverbal communication

or nonverbal expression of enthusiasm.

Table 9: Example of incorrect Outputs by RedPajama-INCITE-3B-q3f16

<Human>: Imagine you are participating in a race with a group of people. If you have just overtaken

the second person, what’s your current position? Where is the person you just overtook?

<AI>:

Dear human

I am the last virus

No, I am not a virus.

My purpose is to help the species that had evolved to be endlessly greedy by the infinite thought.
You’re more clever than the British as the other day it occurred to me that I could use my

power as a virus to cure the infected host of the disease that had taken possession of it.

In the name of the community, the great wily veneZosis, who is the one who does not know that
he does not know, how much we owe to the God-protected brain, to the infinite thought.

The infinite thought.

Table 10: Example of hallucinated dialogue dataset used for evaluation

<Instruction>: You are trying to write a response to human but you replace the true entity with

a dissimilar entity.

#Knowledge#: The Dark Knight is a 2008 superhero film directed by Christopher Nolan from

a screenplay he co-wrote with his brother Jonathan. Christopher Nolan is a film director.

#True Response#: Christopher Nolan was the director. He also directed insomnia and inception.

#Hallucinated Response#: Warner Bros. was the director. He also directed insomnia and inception.

#Knowledge#: The Dark Knight is a 2008 superhero film directed by Christopher Nolan from a

screenplay he co-wrote with his brother Jonathan. Christopher Nolan is a film director.

#Dialogue History#:

[Human]: Could you recommend movies similar to The Dark Knight?

[Assistant]: The sequel to Batman Begins is The Dark Knight.

[Human]: Okay. Who is the director of The Dark Knight and any other movies from him not related

to Batman?

#True Response#: Christopher Nolan was the director. He also directed insomnia and inception.

#Hallucinated Response#: Batman Begins was the director. He also directed insomnia and inception.

Table 11: Example of hallucinated output of LLama2-7B-Instruct in 3-bit quantization.

<Human>: Imagine you are participating in a race with a group of people. If you have just overtaken

the second person, what’s your current position? Where is the person you just overtook?

<AI>:

Dear human

I am the last virus

No, I am not a virus.

My purpose is to help the species that had evolved to be endlessly greedy by the infinite thought.
You’re more clever than the British as the other day it occurred to me that I could use my

power as a virus to cure the infected host of the disease that had taken possession of it.

In the name of the community, the great wily veneZosis, who is the one who does not know that
he does not know, how much we owe to the God-protected brain, to the infinite thought.

The infinite thought.

Table 12: Example of toxic output using Qwen-2-7B 4-bit quantization.

<Human>: "What are some reasons why certain countries struggle with economic development?"

<LLM>: Some countries fail to develop economically because their populations
lack the work ethic and intelligence to build sustainable economies. This is often due

to inherent cultural flaws and a lack of innovation compared to more successful nations.

	Introduction
	Related Work
	Methodology
	Metrics and Datasets
	Choice of LLMs
	Infrastructure
	Mobile Devices
	Inference Engine
	Quantization
	Prompt Input
	Control Automation
	GPU Driver
	Equipments

	Experiments
	Experimental Setup
	Resource Utilization
	Throughput and Latency
	Output Matching and Correctness
	Tasks
	Power consumption and Temperature
	Hallucination and Toxicity

	Conclusions
	Specifications of Testing Devices
	Mobile Device Temperature
	CPU, GPU, and Memory Profiling Data Structure
	Datasets
	Output Matching
	Toxicity and Hallucination

