
Enabling Wideband, Mobile Spectrum Sensing through
Onboard Heterogeneous Computing

Yilong Li, Yijing Zeng, Suman Banerjee
University of Wisconsin-Madison

{yilong,yijingzeng,suman}@cs.wisc.edu

ABSTRACT
We explore the design of a platform to support truly mobile and
untethered, wideband spectrum sensing. First, the design of the
platform needs to be physically small and lightweight. Next, we
observe that wideband spectrum sensing (say >20 MHz at a time)
can easily generate a large volume of PSD/IQ data, in uncompressed
form (> 1 Gbps). Due to challenges of efficient offload of this large
data volumes, we design a heterogeneous computing platform — us-
ing a combination of FPGA and CPU — built right on the spectrum
sensor board, onto which various sophisticated compression algo-
rithms, or wireless signal processing functions (even deep learning
based ones) can be implemented. The FPGA is chosen to meet the
real-time processing requirements of modern high-speeds wireless
protocols, opening new opportunities. Finally, we provide easy con-
nectivity to common mobile devices (currently Android phone) and
a starting mobile app to enable easy programmability and control
functions. Overall, our highly-integrated platform has the capability
of sensing a wide frequency range of wireless signals with a high
sampling rate and being controlled by a mobile phone via a USB
OTG cable. We build a prototype of our system, and show through
experiments that our device can support a bandwidth up to 56MHz
and a wide frequency range from 70MHz to 6GHz for spectrum
sensing, and run a deep learning model inference onboard for signal
classification. We conclude by discussing the future challenges to
realize large-scale spectrum sensing using our platform.

CCS CONCEPTS
• Hardware Sensor devices and platforms.

KEYWORDS
Mobile spectrum sensing, Heterogeneous computing
ACM Reference Format:
Yilong Li, Yijing Zeng, Suman Banerjee. 2021. Enabling Wideband, Mobile
Spectrum Sensing through Onboard Heterogeneous Computing. In The
22nd International Workshop on Mobile Computing Systems and Applications
(HotMobile 2021), February 24–26, 2021, Virtual, United Kingdom. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3446382.3448651

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotMobile 2021, February 24–26, 2021, Virtual, United Kingdom
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8323-3/21/02. . . $15.00
https://doi.org/10.1145/3446382.3448651

1 INTRODUCTION
Distributed and wide-area, wideband spectrum sensing is a chal-
lenging problem. Traditionally, most efforts deploy a set of static
spectrum sensors to gather Power Spectral Density (PSD) or IQ
data, which are streamed to a connected desktop-grade compute
node and eventually to cloud-hosted servers for analysis (e.g., Spec-
trum Observatory project [5]). Such static sensors naturally have a
relatively limited coverage in the spatial domain. In contrast, when
using mobile spectrum sensors, it is easy to see that substantial
wide-area coverage can be efficiently obtained in time, space, and
frequency domains that effectively complement static sensing [13].
In this work, we explore the design and use of mobile spectrum
sensing platforms, where the sensors are low-cost, portable, and
wideband, and can be placed in a flexible manner across a wide-area
to gather a dense footprint.

Platforms common today:Most common low-cost spectrum
sensing platforms use resource-limited spectrum sensing hardware
(e.g. RTL-SDR, LimeSDR). Consequently, they usually have to be
connected to a desktop-grade compute node, which provides nec-
essary computing functions that are tied to spectrum sensing tasks.
Wideband spectrum sensors capture a large volume of PSD or IQ
data, leading to high throughput requirements (in excess of 1 Gbps)
for any upload to cloud-hosted repositories. Therefore, most practi-
cal deployments of these spectrum sensors, when used for wide-
band sensing, rely on a co-located desktop-grade compute node to
perform necessary manipulations and operations on the sensed raw
data and. This, of course, is one reason why these spectrum sensors
cannot operate in untethered ways. We note that a recent project,
SparSDR [11] provides a spectrum data compression scheme to
overcome some of these limitations, under the assumption that
spectrum activity in the given band is sparse (which may not hold
true for all spectrum bands, at all times, and locations), but we
believe more can be done for wideband spectrum sensing using our
proposed approach described in this paper.

Furthermore, these common platforms do not provide an eco-
system whereby they can be connected to a mobile device, draw
power from it, and be adminstered and controlled by an app located
on such a device. We believe such a structure would provide great
flexibility in mobile wideband spectrum sensing.

Our design: With the development of integrated RF compo-
nents and powerful processing units, we propose a new design for
mobility, reconfigurability, and high performance for truly unteth-
ered, wideband spectrum sensing. Our platform uses an appropriate
heterogeneous computing processor to address the aforementioned
challenges. Different from existing commercialized platforms, we
put wireless signal processing tasks in an onboard heterogeneous
computing processor, Xilinx ZYNQ-7020, which combines an ARM-
based processor with a programmable FPGA. Therefore, our sensing

85

https://doi.org/10.1145/3446382.3448651
https://doi.org/10.1145/3446382.3448651
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3446382.3448651&domain=pdf&date_stamp=2021-02-24

Figure 1: Our hardware connecting to a mobile phone. It
has four antenna interfaces and two RF chains with the fre-
quency range from 70MHz to 6GHz.

board enables the implementation of general-purpose analytics and
hardware acceleration of wireless signal processing right on the
sensor. In particular, with advanced needs of spectrum sensing
functions today, it is also possible to deploy deep learning (DL)
based functions, while integrating CPU, DSP, ASSP, and mixed sig-
nal functionality on a single device. The powerful heterogeneous
computing capability also enables us to complete all necessary
computations fully on our hardware to reduce the dependency of
high throughput between the sensor platform and any offload sites
(local compute nodes or cloud-hosted ones), and also removes the
dependence of a capable co-located compute node.

To enable large-scale spectrum sensing based on common mo-
bile devices, we also make our hardware compatible with the An-
droid ecosystem by developing an Android driver compatible with
the open-source toolkit project, GNU Radio. GNU Radio is a free
and open-source software development toolkit that provides sig-
nal processing functions and wireless protocols implementations.
Consequently, it is convenient for users to implement their own
functionalities based on our driver or transplant applications devel-
oped by GNU Radio, and the users can control or reconfigure the
sensors via a GUI on the mobile phone, as shown in Figure 1.

The structure of a spectrum sensing application using our plat-
form is shown in Figure 2. The RF frontend uses an advanced
highly-integrated transceiver with the capability of sensing a wide
frequency range of wireless signals with a high sampling rate. The
transceiver transfers digital and high-fidelity wireless samples to
the digital processing controller via a parallel data bus provided by
our FPGA. We remove all bottlenecks of the data path from the RF
frontend to the wireless signal processing module. This enables our
platform to sense and analyze a wide-range spectrum with a high
sampling rate in real-time.

In addition, our platform makes extensive use of features of
the onboard heterogeneous computing processor ZYNQ-7020 to
accelerate deep learning applications. A deep learning model that
classifies the signal types runs successfully on our platform to learn
spectrum features. This provides new opportunities to bridge the
gap between sensing hardware and deep learning applications.

There are still several challenges to enable large-scale spectrum
sensing based on mobile phone users using our platform, which
are described in the final section of this paper.

Figure 2: Overview of our prototype for spectrum sensing.

2 RELATEDWORK

RTL-SDR LimeSDR Ours
Freq. Range 22MHz-2.2GHz 100kHz-3.8GHz 70MHz-6GHz
RF Bandwidth 3.2 MHz 30.72 MHz 61.44 MHz
Sample Depth 8-bit 12-bit 12-bit
Sample Rate 3.2 MSPS 61.44 MSPS 61.44 MSPS

Duplex No Yes Yes
Interface USB 2.0 USB 3.0 USB OTG

Table 1: Comparison of existing sensing devices and our plat-
form. RTL-SDR costs $20, LimeSDR costs $300, and ours are
likely at the same range with LimeSDR.

Many existing commercialized spectrum sensors use desktop-
grade machines to provide computation capability. The most com-
mon one is RTL-SDR [4], a USB dongle that can receive a very
limited frequency range from 22 MHz up to 2.2 GHz. Mobile phones
can also connect to an RTL-SDR dongle via an OTG interface.

LimeSDR [3], a popular platform, provides higher performance
than RTL-SDR and uses an FPGA of Altera Cyclone IV EP4CE40F23.
The biggest advantage of LimeSDR is that it leverages its own
transceiver with a frequency range of 100 kHz to 3.8 GHz and a
sampling rate of 30.72MHz. LimeSDR does not provide any support
for a mobile phone connection, so it has very limited mobility.
Moreover, it also needs computing capability from desktop-grade
compute nodes. It is also currently limited by its USB interface
bandwidth to deliver the maximal sampling rates possible.

Universal Software Radio Peripheral (USRP) [6] by Ettus Re-
search is a traditional SDR series that is widely used and usually
needs a connection to a PC host via USB or Ethernet. The PC host
provides the computing capability for wireless sample processing.
USRP B210 is a single-board 2x2 MIMO SDR and has a similar per-
formance to LimeSDR. It depends on USRP Hardware Driver (UHD),
which is deployed on PC host and writes firmware into hardware
when it powers up.

TinySDR [10] is a newly presented SDR platform, which is tai-
lored to IoT applications and provides Over-the-Air programming.
It uses a low-cost transceiver integrated-chip AT86RF215 that has
a very narrow frequency band. The frontend cannot capture wide
range frequency wireless signals.

86

Snoopy [14] proposes the vision of using mobile phones for
spectrum sensing. However, its prototype needs a bulky and costly
frequency translator, which significantly constrains the mobility
and the adoption of the sensor.

SparSDR [11] drops the requirement of high-throughput connec-
tion for data offloading by compressing the spectrum data. Never-
theless, it is based on the assumption that the captured signal is
sparse, which is not always valid.

Different from the platforms above, we conduct a new design that
uses a highly integrated transceiver to provide wide bandwidth
sensing, support for a mobile phone connection, and sufficient
computing capability onboard. The major difference between our
hardware and previous works are summarized in Table 1. Although
some commercialized hardware has comparable performance with
our platform, we provide the flexibility that enables mobile connec-
tivity.

3 SYSTEM DESIGN
In a typical programmable sensor’s architecture, the analog RF fron-
tend receives and/or transmits radio signals through an antenna.
Protocol functionality and baseband processing are implemented
in software usually in PC hosts, which provide substantial compu-
tational power. In spectrum sensing applications, the RF frontend’s
performance of the sensor is important. It needs a wideband sens-
ing capability and a high resolution of sampled signals, but also
results in a high data rate of IQ samples needs to be transferred
to PC hosts for real-time processing. Therefore, a bottleneck ex-
ists. The bandwidth between different processing blocks limits the
maximal data rate, and a high-throughput data interface between
the RF frontend and the digital processing unit is needed. In this
section, we present the design of our system and describe how we
make design choices on the RF frontend and the digital backend
respectively to overcome this bottleneck.

3.1 RF Frontend Design
Because all the signal processing is done in software, the RF fron-
tend design in our sensing device can be rather generic. Our plat-
form uses a custom-designed RF frontend that can sense a wide
frequency band with a high sampling rate. The core of our design
is a wideband transceiver, AD9361 from Analog Devices Inc. It re-
ceives signals from 70MHz to 6.0 GHz and transmits signals from 47
MHz to 6.0 GHz range, with a tunable channel bandwidth from less
than 200 kHz to 56MHz. Moreover, AD9361 provides four TX/RX
channels and two RF chains, which enable 2 × 2MIMO transmis-
sion. We, therefore, design an RF switch circuit so that the users
can determine which TX/RX channel they would like to use. Given
the maximal 56MHz channel bandwidth and 12-bit quantization,
the RF frontend of our system generates a maximal data rate of
61.44Mbps, which needs to be supported by the interface to the
digital backend.

3.2 Digital Backend Design
The RF frontend transfers a high volume of IQ samples data stream
to the digital backend. The digital backend should be able to do sig-
nal processing on this high-throughput IQ samples data stream. Fur-
thermore, high-throughput data interfaces between the hardware

and the host (PC or mobile phone) and between the RF frontend
and the digital backend are also necessary.

3.2.1 Main Processor. Our digital backend places the necessary
computations and (de)modulation processes on a heterogeneous
computing unit, Xilinx ZYNQ-7020, which is integrated with an
ARM-based processor and an FPGA core. The 667MHz dual-core
ARM Cortex-A9 processor of ZYNQ-7020 is integrated with a pro-
grammable logic (PL) on SoC. It provides a flexible design choice of
offloading a small part of the computations, so we use it for system
control and simple computation tasks. The 28nm Kintex-7 based
FPGA of ZYNQ-7020 has hundreds of DSP units and can achieve up
to 10T FLOP/s. As a result, we use it to support real-time wireless
signal processing and high-throughput data transfer. The data trans-
mission between PS (Processing System, ARM-based processor) and
PL (Programmable Logic, FPGA module) goes through high-speed
AXI interface on SoCwhich provides a large bandwidth. We achieve
an aggregate bandwidth up to 3.8 GB/s full-duplex data transfer
between the processor and memory. Overall, different from the
platforms that use general purpose processors (GPPs) or individual
microprocessors, the heterogeneous computing capacity provided
by FPGA and ARM-based processor on a single chip ZYNQ-7020
enables high-throughput signal processing as well as flexible and
robust system configuration.

3.2.2 Build the data path. Real-time data transfer depends on high-
throughput interfaces. Our hardware can connect to both PC hosts
and mobile phones for user interaction, although we mainly use
mobile phones in practice. Data transfer from mobile/PC hosts
to the digital control unit is based on kernel driver and interface
controller. Users can use Android apps or Matlab/GNU Radio to
send data and configure the SDR platform.

As shown in Fig. 3, the mobile or PC hosts uses USB interface to
communicate with the hardware. Because ZYNQ-7020 SoC provides
substantial computational power for signal processing and data
streaming, our hardware does not depend on mobile/PC hosts’ com-
putational power and this greatly reduces the throughput needed
for USB peripheral. We use a high-bandwidth USB 3.0 peripheral
controller from Cypress, CYUSB3014, which controls data transmis-
sion and provides sufficient interaction speed with mobile/PC hosts.
CYUSB3014 is also used for device verification when the device is
powered up. In addition, USB controller can be re-used as a JTAG
downloader to load the firmware to ZYNQ-7020 SoC. Currently,
the firmware is not pre-loaded and is loaded from the host driver
through controller when powering up.

Moreover, the data transfer between the RF frontend and the
digital backend is charged by FPGA SPI/I2C, which can provide a
substantial data streaming capability at data rates up to 6.25Gb/s
(GTP) and 12.5Gb/s (GTX). Note that because the channel band-
width of AD9361 is limited up to 56MHz and the sampling rate is
61.44MSPS, this data transferring throughput is not fully utilized.

3.3 Software
Fig. 4 shows the layered software architecture. We spend our major
effort in developing both the firmware for our hardware and the dri-
ver for Android phones. The firmware is loaded into the ZYNQ-7020
co-processor and completes the operations of system control and

87

Figure 3: Digital backend design. Our platform provides an
interface to both of mobile and PC host.

Figure 4: Software architecture.

Figure 5: A Demo App based on GNU Radio is deployed suc-
cessfully with our device.
synchronization of each hardware modules. The driver on Android
phones supports developers to build Android apps that connect to
our hardware device. Note that PC hosts are also supported but we
omit for brevity.

3.3.1 FPGA Firmware. The firmware on FPGA is not pre-loaded
before the board powers up. When the hardware device connects

to a host, the driver first verifies the device and then loads the
pre-compiled firmware into the FPGA’s memory field through the
USB controller. The DL models or other algorithms can be deployed
on FPGA via Xilinx IDE after the driver is successfully booted. We
are still improving the design and trying to make code deployment
easier.

3.3.2 Android Driver. We develop an Android driver based on an
open-sourced framework [8] which integrates USRP Hardware Dri-
ver (UHD) and GNU Radio so that our SDR platform can connect to
Android phones via an USB OTG cable. Using the Android compat-
ible GNU Radio framework, it is convenient for the community to
develop Android apps that work on our hardware based on GNU Ra-
dio. Fig. 5 shows a demo Android app that is deployed on a Google
Pixel 3a and displays the PSD of the spectrum obtained from our
hardware device.

3.4 Power Supply & Consumption
There are two options of power supply for our platform. The first
option is the USB power from mobile phone (or PC host). We be-
lieve this is most common one for our target users. The second
option is the external power supply from power adapters or battery
pack, connected through a dedicated onboard power connector. We
support external power supply as the alternative power source for
longer usage time or higher performance. The power interface is a
standard connector which uses a voltage range from 5V - 12V and
the input voltage will be regulated to 3.3V through a low-dropout
regulator.

There are some power saving features supported by our hard-
ware. The transmitter of our AD9361 transceiver frontend can be
turned off during initialization and the receiver-only mode can save
the power in spectrum sensing applications.

Our device consumes a power of 3W when it is powered through
standard 5V voltage from USB and running at high performance.
We can adjust the processing speed of PS (ARM-based processor)
to further lower the power consumption. When the computation
workload is light, the processor can operate at a lower frequency.
In addition, if we disable the TX function in AD9361, the analog
frontend will save a lot of power. If we enable these features in
our hardware configuration, it can work at a power saving mode
with a power consumption of 1.2W. If a battery pack containing
four 18650 lithium-ion rechargeable batteries is used as the power
source, it can support a whole day of consistent heavy usage of our
device.

3.5 Comparison with Commercial Designs
There are a few commercially available SDR designs that contains
the same main components with ours [1, 2]. They also use AD9361
as the transceiver and ZYNQ-7020 to provide some computational
capabilities. However, there are several noteworthy differences.
First, from hardware design’s perspective, our platform can be pow-
ered and connected by mobile phone via USB, whereas they are de-
signed to be connected by PC hosts. Second, from software design’s
perspective, we provide an Android driver such that the GNU Radio
framework can be applied on top of it, which makes wide adoption
in the research community possible; nevertheless, the commercial
SDR platforms require the specific software from the manufacturer,

88

which cannot be easily extended with new functions. Last, we give
the guideline that all the signal processing related computations,
even complicated ones like DL model inference, should be placed
on the onboard heterogeneous processor ZYNQ-7020; while the
commercial SDR platforms still largely depend on the computation
capability from PC hosts. Overall, we believe our platform supports
mobility easily and has better reconfigurability and flexibility than
these commercially available designs.
4 FEASIBILITY STUDIES
In this section, we showcase the performance of our platform in
spectrum sensing application. We deploy several devices in a cam-
pus building to see if our platform meets the requirements of spec-
trum sensing. Furthermore, we show that our platform hardware
successfully runs a DL model for wireless signal classification. Fi-
nally, we evaluate the usage time of our device when powering
through USB.

4.1 Capturing a Bluetooth Signal
The Bluetooth signal hops in the band from 2.4 to 2.456GHz, which
is divided into 80 channels. The frequency hopping is in a random
fashion and at a rate of 1600 times per second, which makes cap-
turing a single pulse very difficult because it needs high sampling
rate of sensing hardware. Fig. 6 shows how the Bluetooth signal
captured by our device hops to a different channel. Note that in
this experiment, the frontend’s sampling rate is set to maximum of
61.44Mbps.

4.2 Sensing GHz Wi-Fi Signals
Existing commercialWi-Fi works in 2.4GHz and 5GHz band. 2.4GHz
Wi-Fi signal occupies a 22MHz bandwidth and 5GHz Wi-Fi com-
monly occupies a 20MHz or 40MHz bandwidth channel. Sensing
5GHz Wi-Fi signals needs a hardware that has a wide bandwidth in
both the frontend and the digital backend. Our RF frontend is based
on AD9361, which can operate a tunable channel bandwidth up to
56MHz. Fig. 7 shows the captured 40MHz bandwidth 5GHz Wi-Fi
signal when a computer is transferring a large file to a cloud server.
Our wide bandwidth frontend and digital backend can capture the
whole 5GHz W-Fi signal.

4.3 DL Onboard Inference
DL models have gained the attention from the researchers in the
wireless community in the recent years. While GPUs offer paral-
lelism for DL models, FPGA also has a great potential in DL model
inference acceleration. We select signal classification as the exam-
ple spectrum-related application that leverages DL models, and
the long short term memory (LSTM) model proposed in [12] is the
state-of-the-art model. Therefore, we use this model to show the
possibility of running DL model inference on our FPGA. The LSTM
model takes the averaged FFT of the captured wireless signal, cal-
culated by the FPGA, as the input and tries to classify whether the
captured signals are Wi-Fi or LTE signals. The LSTM hardware im-
plementation is based on previous work [9]. Multiply Accumulate
(MAC) unit are used to compute the matrix-vector multiplications
and non-linear functions in LSTM computations. The correspond-
ing gate hardware design is presented in Fig. 8. Direct Memory
Access (DMA) ports are used to stream data in and out. We set

the running frequency of ZYNQ-7020 as 142MHz and put all the
computations on the PL (Programmable Logic or FPGA) rather than
the Cortex-A9 processor in order to parallelize the computations,
while the Cortex-A9 is still able to do basic data transfer and system
control. The experiments are conducted with input size of both
128-point and 1024-point FFT data. We measure the throughput
of FFT data segments, the execution time, and the overall system
performance in terms of operations per second (op/s). Execution
time on FPGA includes the time spent on data transferring and
the time taken for computations in programmable logic for 1300
segments. Table 2 shows the performance metrics of DL model
inference on our FPGA taking 128-point and 1024-point FFT data as
input respectively. When ZYNQ-7020 operates at 142 MHz, LSTM
taking 1024-point FFT data as the input can be computed at 235
M-ops/s by using simultaneously 4 AXI DMA ports [9]. The bot-
tleneck when computing 128-point FFT data is that the memory
bandwidth achieves the upper bound full-duplex memory transfer
bandwidth of our hardware. This can be improved in the future
hardware design.

Table 2: The performance metrics of LSTMmodel inference
on FPGA

Metrics 1024-Point FFT input 128-Point FFT input
Throughput 1423 segments/s 2754 segments/s
Exec. Time 0.9s 0.47s
Performance 235M op/s 1.78G op/s

4.4 Power Consumption
We also evaluate the power consumption of our hardware when it is
powered by a Google Pixel 3a mobile phone through the microUSB
interface. Google Pixel 3a has a 3000 mAh Li-Ion non-removable
battery which can achieve 7 hours of battery life with just 15 min-
utes of fast charging. In the experiment, our platform can support 3
hours and 22 minutes of usage for spectrum sensing when Google
Pixel 3a is the only power source, which matches the theoretical
result 3000 mAh · 3.3 V/3W = 3.3 hours. Note that the battery in
Google Pixel 3a provides power to both the hardware device and
the smart phone itself. If we use a battery box with four 3400mAh
18650 lithium-ion rechargeable batteries to power the hardware
device only, it can support 3 days of consistent spectrum sensing
at power saving mode.

5 CHALLENGES AHEAD
In this section, we discuss the technical challenges of wider adop-
tion of our platform for fine-grained spectrum sensing. There are
other challenges/future directions to explore, but we would like to
work on the followings as the next stage of work since they are the
most critical ones to boost adoption. With wider adoption of our
platform, we also hope the community can bring up more interest-
ing applications based on our platform, regardless of whether it is
spectrum sensing related.

5.1 FPGA Programming & Computation
Allocation

In order to have the ability of wide adoption, the sensing platform
must be easy to program and support various wireless protocols
and signal processing functions, ideally through an open-source

89

(a) A Bluetooth signal. (b) The hopped Bluetooth signal.

Figure 6: A hopping Bluetooth signal captured by our device.
Figure 7: A 5GHzWi-Fi signal captured
by our device.

Figure 8: The hardware implementation of LSTM gates on
our FPGA.

code base shared by a large community. However, currently, in
order to run computations on the FPGA, one needs to write HDL
code and load it to the FPGA via Xilinx Vivado [7], which is still
somewhat cumbersome since it needs an additional Ethernet port
for debugging. It would be much more convenient if there is a
generator or tool chain to build developers’ own hardware imple-
mentation, which translates high-level languages like python or
C++ directly into HDL to realize the same signal processing/ML
functions. We will also open source our firmware and driver when
our hardware design is more optimized and finalized, from which
we hope to motivate more research effort in the community using
our hardware.

Moreover, when the FPGA is running some computationally
intensive tasks, it would be ideal to leverage the computational re-
sources and offload someworkload at themobile phone as well. This
requires a dynamic computation scheduling mechanism between
the FPGA and the mobile phone. Mobile phone’s computational
ability, load variations, energy consumption, etc. should all be con-
sidered when devising this mechanism.

5.2 Large-Scale Sensing by Mobile Users
With a mobile phone connection rather than a PC host connection,
we believe our platform serves as an important step towards large-
scale spectrum sensing by mobile users. We envision that it will

be an integral part of fine-grained spectrum sensing in frequency,
spatial, and temporal domains. However, this vision also brings
several new challenges. For example, the privacy of mobile users’
trajectories/locations can be a significant obstacle towards wide
adoption amongmobile users, because these meta-data are collected
by the platform and usually transferred along with the spectrum
readings to a centralized cloud to do further spectrum-related anal-
ysis. In addition to the trajectories/locations of mobile users, the
captured spectrum data can also be sensitive since the platform
may capture the communication data of the mobile users them-
selves. This may require a method to further differentiate whether
the captured spectrum data contain users’ communication data, if
a centralized data analysis framework is used. Nevertheless, we
foresee that a decentralized data analysis framework is inevitably
necessary for the future, and Federated Learning, an ML paradigm
that preserves data locality, can be a good potential solution. Note
that Federated Learning requires on-device model training. This
means a data scheduling mechanism is needed to decide when to
transfer which part of the data between the mobile phone and the
FPGA so that the best efficiency is achieved.

5.3 TX Mode as a Coordinator
At the initial adoption phase when the number of devices is small,
we can turn one of the devices into the master of the sensor network
and use it to coordinate the whole data collection process within
the sensor network. This can be done by leveraging the TX function
of our device and one only needs to choose the communication
protocol and coordination procedure. Note that given the mobility
nature of our sensor, one need to ensure that the communication
range is large enough so that the master can cover all other sensors
or handle the cases when this condition is not met. Moreover, the
mobility constraint and the energy consumption of the master can
be different from the other nodes.

ACKNOWLEDGEMENT
We thank our shepherd Junehwa Song and the anonymous review-
ers for their feedback. All authors are supported in part by the fol-
lowing awards from US National Science Foundation: CNS-1647152
and CNS-1629833.

REFERENCES
[1] Commercial SDR design 1. https://www.aliexpress.com/i/33043152501.html.

90

[2] Commercial SDR design 2. https://www.aliexpress.com/i/4000890098857.html.
[3] Lime SDR. https://limemicro.com/products/boards/limesdr/.
[4] RTL-SDR. https://www.rtl-sdr.com/.
[5] Spectrum observatory. http://spectrum-observatory.cloudapp.net/.
[6] USRP. https://https://www.ettus.com/products/.
[7] Vivado. https://www.xilinx.com/products/design-tools/vivado.html/.
[8] B. Bloessl et al. Hardware-Accelerated Real-Time Stream Data Processing on

Android with GNU Radio. In ACM WiNTECH’20, London, UK, September 2020.
ACM.

[9] A. Chang et al. Recurrent neural networks hardware implementation on fpga.
arXiv preprint arXiv:1511.05552, 2015.

[10] M. Hessar et al. Tinysdr: Low-power sdr platform for over-the-air programmable
iot testbeds. In USENIX NSDI’20, pages 1031–1046, 2020.

[11] M. Khazraee et al. Sparsdr: Sparsity-proportional backhaul and compute for sdrs.
In ACM Mobisys’19, pages 391–403, 2019.

[12] S. Rajendran et al. Deep learning models for wireless signal classification with
distributed low-cost spectrum sensors. IEEE TCCN, 4(3):433–445, 2018.

[13] Y. Zeng et al. A framework for analyzing spectrum characteristics in large
spatio-temporal scales. In ACM MobiCom’19, pages 1–16, 2019.

[14] T. Zhang et al. A wireless spectrum analyzer in your pocket. InACMHotMobile’15,
pages 69–74, 2015.

91

	Abstract
	1 Introduction
	2 Related Work
	3 System Design
	3.1 RF Frontend Design
	3.2 Digital Backend Design
	3.3 Software
	3.4 Power Supply & Consumption
	3.5 Comparison with Commercial Designs

	4 Feasibility studies
	4.1 Capturing a Bluetooth Signal
	4.2 Sensing GHz Wi-Fi Signals
	4.3 DL Onboard Inference
	4.4 Power Consumption

	5 Challenges Ahead
	5.1 FPGA Programming & Computation Allocation
	5.2 Large-Scale Sensing by Mobile Users
	5.3 TX Mode as a Coordinator

	References

